

The state of the s

InGaAs linear image sensors

G11608 series

Wide spectral response range, near infrared image sensors (0.5 to 1.7 μ m)

The G11608 series InGaAs linear image sensors are specifically designed for near infrared multichannel spectrophotometry. The G11608 series consists of an InGaAs photodiode array with enhanced sensitivity at shorter wavelengths, and CMOS chip that contains a charge amplifier array, a shift register, and a timing generator. The charge amplifier array is made up of CMOS transistors connected to each pixel of the InGaAs photodiode array. Signals from each pixel are read out in charge integration mode to achieve high sensitivity and stable operation.

The signal processing circuit on the CMOS chip offers two levels of conversion efficiency (CE) that can be selected by the external voltage to meet the application.

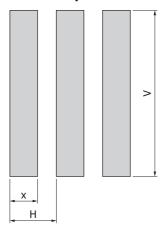
Features

- Wide spectral response range (0.5 to 1.7 μm)
- Low noise
- Two selectable conversion efficiencies
- **■** Anti-saturation circuit
- CDS (correlated double sampling) circuit*1
- **■** Built-in thermistor
- Simple operation (by built-in timing generator)*2
- High resolution: 25 μm pitch (G11608-512DA)

Applications

- Near infrared multichannel spectrophotometry
- Radiation thermometry
- → Non-destructive inspection

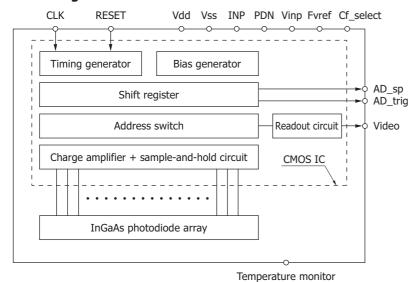
- *1: A major source of noise in charge amplifiers is the reset noise generated when the integration capacitance is reset. A CDS (correlated double sampling) circuit greatly reduces this reset noise by holding the signal immediately after reset to find the noise differential.
- *2: Different signal timings must be properly set in order to operate a shift register. In conventional image sensor operation, external PLDs (programmable logic device) are used to input the required timing signals. However, the G11608 series image sensors internally generate all timing signals on the CMOS chip just by supplying CLK and RESET pulses. This makes it simple to set the timings.


Selection guide

Type no.	Cooling	Image area (mm)	Number of total pixels	Number of effective pixels	Applicable driver circuit	
G11608-256DA	Non-cooled	12.8 × 0.50	256	256	C11513-01	
G11608-512DA Non-cooled		12.6 × 0.50	512	512	C11313-01	

Structure

Type no.	Pixel size [μm (H) × μm (V)]	Pixel pitch (µm)	Package	Window material
G11608-256DA	50 × 500	50	22 nin coramic	Borosilicate glass without
G11608-512DA	25 × 500	25	22-pin ceramic	anti-reflective coating


Details of photosensitive area (unit: μm)

Number of pixels	х	Н	V
256	30	50	500
512	10	25	500

KMIRC0057EA

Block diagram

KMIRC0058EA

■ Absolute maximum ratings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vdd, INP, Fvref Vinp, PDN	Ta=25 °C	-0.3	-	+6	V
Clock pulse voltage	Vφ	Ta=25 °C	-0.3	-	+6	V
Reset pulse voltage	V(RES)	Ta=25 °C	-0.3	-	+6	V
Gain selection terminal voltage	Vcfsel	Ta=25 °C	-0.3	-	+6	V
Operating temperature*3	Topr	Non dew condensation	-10	-	+60	°C
Storage temperature*3	Tstg	Non dew condensation	-20	-	+70	°C
Soldering conditions	-		260	°C or less, within	5 s	-
Thermistor power disspation	Pth		-	-	400	mW

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

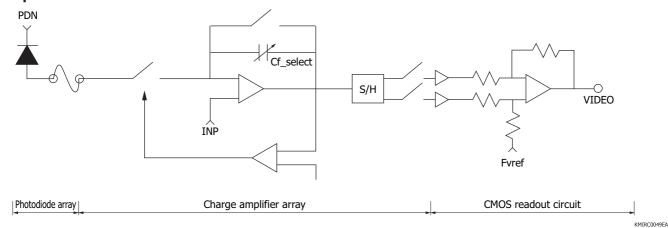
₽ Recommended terminal voltage (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd	4.7	5.0	5.3	V
Differential reference vo	ltage	Fvref	1.1	1.2	1.3	V
Video line reset voltage		Vinp	3.9	4.0	4.1	V
Input stage amplifier reference voltage		INP	3.9	4.0	4.1	V
Photodiode cathode voltage		PDN	3.9	4.0	4.1	V
Ground		GND	-	0	-	V
Clack pulsa valtaga	High	Vφ	4.7	5.0	5.3	\/
Clock pulse voltage	Low	νψ	0	0	0.4	v
Pocot pulso voltago	High	\//DEC\	4.7	5.0	5.3	V
Reset pulse voltage	Low	V(RES)	0	0	0.3	V

□ Electrical characteristics (Ta=25 °C)

Paramet	er	Symbol	Min.	Тур.	Max.	Unit
G	.1608-512DA	I(Vdd)	-	45	80	mA
G	.1608-256DA	I(Vuu)	-	85	120	IIIA
Consumption		Ifvref	-	-	1	mA
current		Ivinp	-	-	1	mA
		Iinp	-	-	1	mA
		Ipdn	-	-	1	mA
Operation frequency	Operation frequency		0.1	1	5	MHz
Video data rate	Video data rate		0.1	f	5	MHz
Video output voltage	High	VH	-	4.0	-	V
video output voitage	Low	VL	-	1.2	-	V
Output offset voltage	Output offset voltage		-	Fvref	-	V
Output impedance		Zo	-	5	-	kΩ
AD_trig, AD_sp puls	e High	Vtria Van	-	Vdd	-	V
voltage	Low	Vtrig, Vsp	-	GND	-	V
Thermistor resistance		Rth	9.0	10.0	11.0	kΩ
Thermistor B consta	nt*4	В	-	3950	-	K

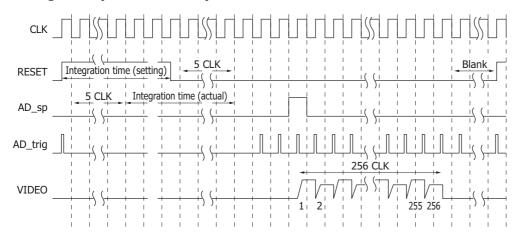
^{*4:} T1=25 °C, T2=50 °C

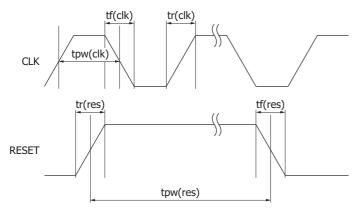

^{*3:} When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

Ξ Electrical and optical characteristics (Ta=25 °C, Vdd=5 V, INP=Vinp=PDN=4 V, Fvref=1.2 V, Vφ=5 V, f=1 MHz)

Para	ameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Spectral respon	se range	λ		-	0.5 to 1.7	-	μm
Peak sensitivity	wavelength	λр		-	1.55	-	μm
Photo sensitivity	У	S	λ=λρ	0.8	1.0	-	A/W
Conversion effic	cionov*5	CE	Cf=10 pF	-	16	-	nV/e-
Conversion emic	LIETICY	CL	Cf=1 pF	-	160	-	IIV/E
Photoresponse	nonuniformity*6	PRNU		-	±3	±5	%
Caturation char	~~	Ocat	CE=16 nV/e ⁻	168	175	-	Mo-
Saturation char	ye	Qsat	CE=160 nV/e-	16.8	17.5	-	- Me⁻
Saturation volta	ige	Vsat		2.7	2.8	-	V
Dark output	G11608-256DA	Vo	CE_16 pV/o-	-1	±0.1	1	V/s
Dark output	G11608-512DA	VD	VD CE=16 nV/e ⁻	-0.5	±0.05	0.5	
Dark current	G11608-256DA	To	CE_16 pV/o-	-10	±1	10	nΛ
Dark Current	G11608-512DA	ID	CE=16 nV/e	-5	±0.5	5	- pA
Temperature co output (dark cu	efficient of dark rrent)	-	CE=16 nV/e	-	1.1	-	times/°C
Readout noise*7		N	CE=16 nV/e-	-	200	400	u\/rmc
Reducut Hoise		IN	CE=160 nV/e-	-	300	500	μVrms
Dynamic range		D	CE=16 nV/e ⁻	6750	14000	-	-
Defective pixels	*8	-	CE=16 nV/e ⁻		-	1	%

^{*5:} Refer to pin connection when changing conversion efficiency.

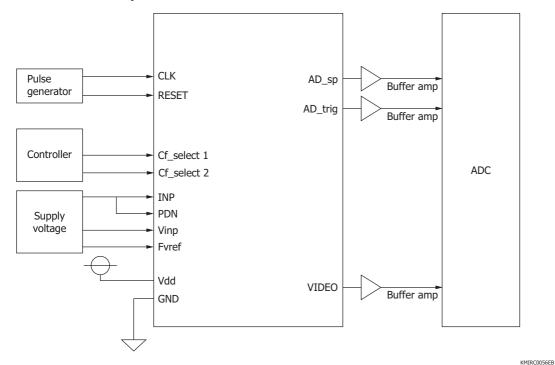

Equivalent circuit

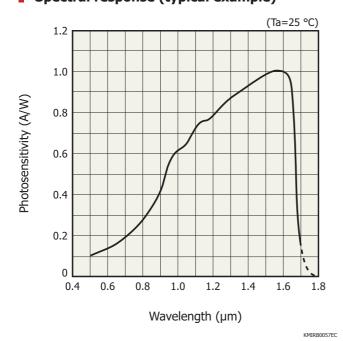


^{*6: 50%} of saturation, integration time 10 ms, after dark output subtraction, excluding first and last pixels *7: Integration time=10 ms (CE=16nV/e⁻), 1 ms (CE=160 nV/e⁻)

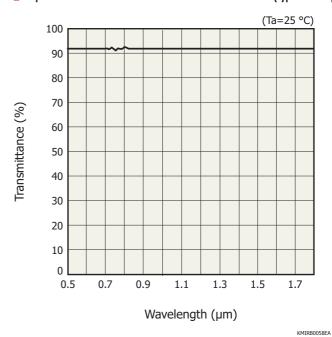
^{*8:} Pixels with photoresponse nonuniformity, readout noise, or dark current higher than the maximum value

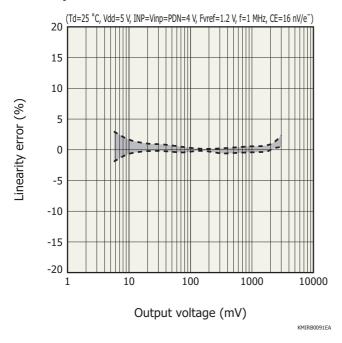
Timing chart (each video line)

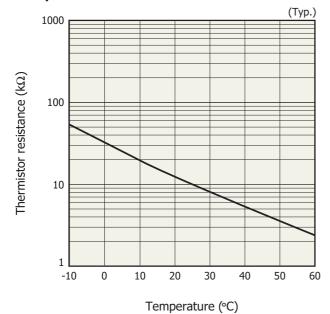



KMIRC0065EA

Parameter		Symbol	Min.	Тур.	Max.	Unit
Clock pulse width		tpw(clk)	60	500	5000	ns
Clock pulse rise/fall times		tr(clk), tf(clk)	0	20	30	ns
Dogot pulso width	High	tow(roc)	6	-	-	clocks
Reset pulse width	Low	tpw(res)	284	-	-	CIOCKS
Reset pulse rise/fall times		tr(res), tf(res)	0	20	30	ns
Reset pulse rise/fall times		tr(res), tf(res)	0	20	30	ns

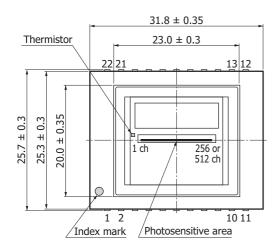

Connection example

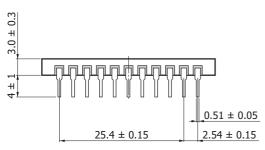

- Spectral response (typical example)

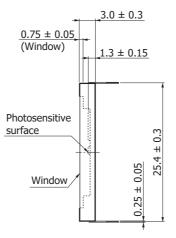

- Spectral transmittance characteristic of window material (typical example)

Linearity error

Temperature characteristics of thermistor




	() ()
Temperature	Thermistor resistance
(°C)	(kΩ)
-10	53.0
-5	41.2
0	32.1
5	25.1
10	19.8
15	15.7
20	12.5
25	10.0
30	8.06
35	6.53
40	5.32
45	4.36
50	3.59
55	2.97
60	2.47


(Typ.)

KMIRB0059E

Dimensional outline (unit: mm)

Chip material: InGaAs
Package material: ceramic
Lead treatment: Ni/Au plating
Lead material: FeNi alloy
Window material: borosilicate glass
Reflective index of window material:
nd=1.47
Window material thickness:
0.75 ± 0.05 mm
AR coat: none
Window sealing method:
resin adhesion

Position accuracy of photosensitive area center: ±0.3 (with respect to package center)
Rotation accuracy of photosensitive area: ±5 ° (with respect to package center)

Pin no. | G11608-256DA | G11608-512DA AD_sp_EVEN RESET_EVEN NC NC 2 NC AD_trig_EVEN 3 4 NC NC Cf_select2 Cf_select2 5 6 Cf_select1 Cf_select1 7 Thermistor Thermistor 8 Thermistor Thermistor CLK_EVEN 9 NC Fvref Fvref 10 NC VIDEO_EVEN 11 VIDEO VIDEO_ODD 12 13 Vinp Vinp CLK CLK_ODD 14 PDN* PDN* 15 INP* INP* 16 GND GND 17 18 Vdd Vdd NC NC 19 AD_trig_ODD 20 AD_trig RESET RESET_ODD 21 22 AD_sp AD_sp_ODD

* PDN and INP should be at the same potential. It is recommended to use the same power source and short between their pins

source and short between the

KMIRA0024EB

Pin connections

Terminal name	Input/Output	Function and recommended connection	Remark
PDN	Input	Cathode bias terminal for InGaAs photodiode. This should be at the same potential as INP.	4.0 V
AD_sp	Output	Digital start signal for A/D conversion	0 to 5 V
Cf_select1, 2	Input*8	Signal for selecting feedback capacitance (integration capacitance) on CMOS chip	0 V or 5 V
Thermistor	Output	Thermistor for minitoring temperature inside the package	-
AD_trig	Output	Sampling synchronous signal for A/D conversion	0 to 5 V
RESET	Input	Reset pulse for initializing the feedback capacitance in the charge amplifier formed in the CMOS chip. Integration time is determined by the high period of this pulse.	0 to 5 V
CLK	Input	Clock pulse for operating the CMOS shift register	0 to 5 V
INP	Input	Input stage amplifier reference voltage. Supply voltage for operating the signal processing circuit in the CMOS chip. This should be at the same potential as PDN.	4.0 V
Vinp	Input	Video line reset voltage. Supply voltage for operating the signal processing circuit in the CMOS chip.	4.0 V
Fvref	Input	Differential amplifier reference voltage. Supply voltage for operating the signal processing circuit in the CMOS chip.	1.2 V
VIDEO	Output	Differential amplifier output. Analog video signal.	1.2 to 3.0 V
Vdd	Input	Supply voltage for operating the signal processing circuit in the CMOS chip (+5 V)	5 V
GND	Input	Grand for the signal processing circuit in the CMOS chip (0 V)	0 V

*8: Conversion efficiency is determined by supply voltage to the Cf_select terminals as shown below.

Conversion efficiency	Cf_select1	Cf_select2
16 nV/e ⁻ (Cf=10 pF)	High	High
160 nV/e ⁻ (Cf=1 pF)	High	Low

Low: 0 V (GND), High: 5 V(Vdd)

InGaAs linear image sensors

G11608 series

Electrostatic countermeasures

This device has a built-in protection circuit against static electrical charges. However, to prevent destroying the device with electrostatic charges, take countermeasures such as grounding yourself, the workbench and tools to prevent static discharges. Also protect this device from surge voltages which might be caused by peripheral equipment.

- Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- · Image sensors

Information described in this material is current as of March, 2016.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

HAMAMATSU

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218

Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8

France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10

United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 IBW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-32577

North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01

Italy: Hamamatsu Photonics (Tax.) Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39) 02-93581733, Fax: (39) 02-93581741

China: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Bellu, Chaoyang District, Beijing 100020, China, Telephone: (86) 10-6586-6006, Fax: (86) 10-6586-2866