

CCD linear image sensor

S11151-2048

High sensitivity in the ultraviolet region, front-illuminated CCD

Despite a front-illuminated CCD, the S11151-2048 offers high sensitivity in the ultraviolet region (200 nm) nearly equal to back-thinned CCD.

Features

Applications

Spectrometers

- High sensitivity in the ultraviolet region (spectral response range: 200 to 1000 nm)
- Image lag: 0.1% typ.
- Low dark current
- → Low cost

Structure

Parameter	Specification			
Pixel size (H \times V)	14 × 200 μm			
Number of total pixels	2056			
Number of effective pixels	2048			
Image size (H \times V)	28.672 × 0.200 mm			
Horizontal clock phase	2-phase			
Output circuit	Two-stage MOSFET source follower			
Package	24-pin ceramic DIP (refer to dimensional outline)			
Window material	Quartz glass ^{*1}			

*1: Resin sealing

Absolute maximum ratings (Ta=25 °C, unless otherwise noted)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Operating temp	erature*2 *3	Topr	-50	-	+55	°C
Storage tempera	ature ^{*3}	Tstg	-50	-	+70	°C
Output transisto	r drain voltage	Vod	-0.5	-	+25	V
Reset drain vol	tage	Vrd	-0.5	-	+18	V
	Vertical input source voltage	VISV	-0.5	-	+18	V
Test point	Horizontal input source voltage	VISH	-0.5	-	+18	V
Test point	Vertical input gate voltage	VIGV	-10	-	+15	V
	Horizontal input gate voltage	VIGH	-10	-	+15	V
Summing gate voltage		Vsg	-10	-	+15	V
Output gate voltage		Vog	-10	-	+15	V
Reset gate voltage		Vrg	-10	-	+15	V
Transfer gate voltage		Vtg	-10	-	+15	V
Horizontal shift register clock voltage		Vp1h, Vp2h	-10	-	+15	V

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

*2: Package temperature

*3: No dew condensation

When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

Operating conditions (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit		
Output transistor drain voltage		Vod	12	13	14	V		
Reset drain voltage	ge		Vrd	10.5	11	11.5	V	
	Vertical input source	e voltage	VISV	-	Vrd	-	V	
Test point	Horizontal input so	urce voltage	VISH	-	Vrd	-	V	
Test point	Vertical input gate	voltage	VIGV	-5	-4	-	V	
	Horizontal input ga	te voltage	VIGH	-5	-4	-	V	
Summing gate ve	ltago	High	Vsgh	4	5	6	V	
Summing gate vo	Summing gate voltage		VSGL	-5	-4	-3	v	
Output gate voltage		Vog	2	3	4	V		
Substrate voltage			Vss	-	0	-	V	
Reset gate voltage		Vrgh	4	5	6	V		
		Low	VRGL	-5	-4	-3	v	
Transfer gate voltage High		High	Vtgh	7	8	9	V	
Transfer gate voltage Low		Low	Vtgl	-5	-4	-3	v	
Harizantal chift r	egister clock voltage		6	v				
		Low	VP1HL, VP2HL	-5	-4	-3	v	
External load resistance		RL	2.0	2.2	2.4	kΩ		

Electrical characteristics (Ta=25 °C, unless otherwise noted, operating conditions: Typ.)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Signal output frequency*4	fc	-	1	5	MHz
Line rate	LR	-	0.48	2.37	kHz
Horizontal shift register capacitance	Ср1н, Ср2н	-	220	-	pF
Summing gate capacitance	Csg	-	10	-	pF
Reset gate capacitance	Crg	-	10	-	pF
Transfer gate capacitance	Стб	-	110	-	pF
Charge transfer efficiency*5	CTE	0.99995	0.99999	-	-
DC output level ^{*4}	Vout	-	8.5	-	V
Output impedance*4	Zo	-	220	-	Ω
Power consumption*4 *6	Р	-	65	-	mW

*4: The value depends on the load resistance.

*5: Charge transfer efficiency per pixel of CCD shift register, measured at half of the full well capacity

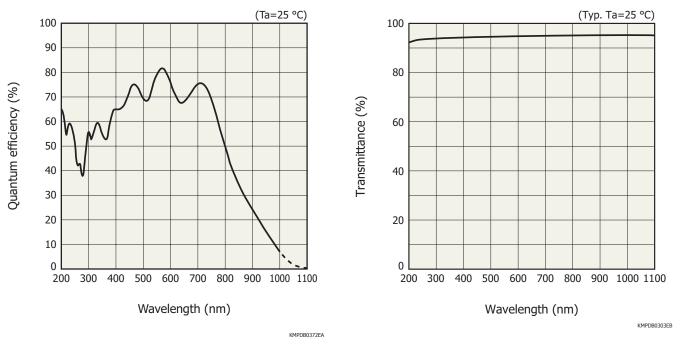
*6: Power consumption of the on-chip amplifier plus load resistance

Electrical and optical characteristics (Ta=25 °C, unless otherwise noted, operating conditions: Typ.)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Saturation output voltage		Vsat	-	$Fw \times Sv$	-	V
Full well capacity		Fw	150	200	-	ke⁻
CCD node sensitiv	/ity	Sv	5	6	7	µV/e⁻
	Average of all effective pixels	DSave	-	700	3500	e ⁻ /pixel/s
	Average of all effective pixels	DSave	-	4	20	pA/cm ²
Dark current*7	Maximum of all effective pixels	DSmax	-	3500	17500	e-/pixel/s
			-	20	100	pA/cm ²
Readout noise*8		Nr	-	25	50	e⁻ rms
Dynamic range*9		DR	3000	8000	-	-
Spectral response range		λ	-	200 to 1000	-	nm
Photoresponse nonuniformity*10 *11		PRNU	-	±3	±10	%
Image lag*10		L	-	0.1	1	%

*7: Dark current is reduced to half for every 5 to 7 °C decrease in temperature.

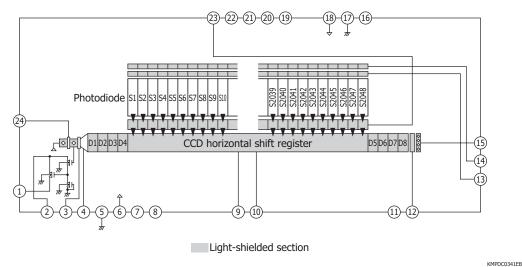
*8: Readout frequency 1 MHz


*9: Dynamic range = Full well capacity / Readout noise

*10: Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 660 nm)

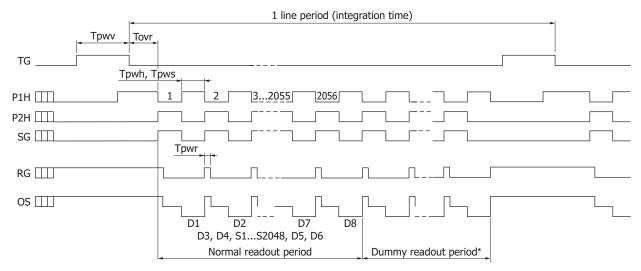
*11: Photoresponse nonuniformity = Fixed pattern noise (peak to peak) × 100 [%]

Signal



Spectral response (without window, typical example)*12

- Spectral transmittance characteristics of window material


*12: Spectral response with quartz glass is decreased according to the spectral transmittance characteristic of window material.

Device structure (conceptual drawing of top view)

Timing chart

* When making the integration time longer than the normal readout period, to carry away the dark current generated in the CCD horizontal shift register, perform dummy readout after completion of the normal readout until right before rising transfer gate pulse.

Parameter		Symbol	Min.	Тур.	Max.	Unit
TG	Pulse width	Tpwv	6	8	-	μs
IG	Rise and fall times	Tprv, Tpfv	20	-	-	ns
	Pulse width	Tpwh	100	500	-	ns
P1H, P2H* ¹³	Rise and fall times	Tprh, Tpfh	10	-	-	ns
	Duty ratio	-	40	50	60	%
	Pulse width	Tpws	100	500	-	ns
SG	Rise and fall times	Tprs, Tpfs	10	-	-	ns
	Duty ratio	-	40	50	60	%
RG	Pulse width	Tpwr	10	100	-	ns
RG	Rise and fall times	Tprr, Tpfr	5	-	-	ns
TG-P1H	Overlap time	Tovr	1	2	-	μs

*13: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

KMPDC0342EC

$1.115 \pm 0.1^{*1}$ 41.6 ± 0.42 $1.65 \pm 0.2^{*2}$ 0.25-0.03 Photosensitive area 28.672 × 0.200 $0.5 \pm 0.05^{*3}$ 24 13 0.03 ± 0.25 10.16 ± 0.25 ппппп Photosensitive surface 1 12 Index mark *1: Length from upper surface of window to photosensitive surface Length from bottom surface of package *2: to photosensitive surface *3: Window thickness 3.0 ± 0.03 Index mark 3.0 ± 0.2 2.54 ± 0.13 0.5 ± 0.05 27.94 ± 0.3

Dimensional outline (unit: mm, tolerance unless otherwise noted: ±0.1)

Note: This product is not hermetically sealed and moisture may penetrate inside the package. Avoid using or storing this product in an environment where sudden temperature and humidity changes may occur and cause condensation in the package.

KMPDA0261EC

Pin connections

Pin no.	Symbol	Function	Remark (standard operation)
1	OS	Output transistor source	RL=2.2 kΩ
2	OD	Output transistor drain	+13 V
3	OG	Output gate	+3 V
4	SG	Summing gate	Same pulse as P2H
5	SS	Substrate	GND
6	RD	Reset drain	+11 V
7	-		
8	-		
9	P2H	CCD horizontal register clock-2	+5/-4 V
10	P1H	CCD horizontal register clock-1	+5/-4 V
11	-		
12	IGH	Test point (horizontal input gate)	-4 V
13	IGV	Test point (vertical input gate)	-4 V
14	ISV	Test point (vertical input source)	Connect it to RD.
15	ISH	Test point (horizontal input source)	Connect it to RD.
16	-		
17	SS	Substrate	GND
18	RD	Reset drain	+11 V
19	-		
20	-		
21	-		
22	-		
23	TG	Transfer gate	+8/-4 V
24	RG	Reset gate	+5/-4 V

Precautions

Electrostatic countermeasures

- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

When UV light irradiation is applied

When UV light irradiation is applied, the product characteristics may degrade. Such examples include degradation of the product's UV sensitivity and increase in dark current. This phenomenon varies depending on the irradiation level, irradiation intensity, usage time, and ambient environment and also varies depending on the product model. Before employing the product, we recommend that you check the tolerance under the ultraviolet light environment that the product will be used in.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- · Disclaimer
- Image sensors

Driver circuit for CCD linear image sensor (S11151-2048) C11160 [sold separately]

The C11160 is a driver circuit designed for HAMAMATSU CCD linear image sensors S11151-2048. The C11160 can be used in spectrometers, etc. when combined with the CCD linear image sensor.

- Features

- Built-in 16-bit A/D converter
- Interface to computer: USB 2.0
- Power supply: USB bus power operation

Information described in this material is current as of February 2017.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

HAMAMAISU PHOTOVICS K.K., Solid State Division 1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184 U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Seutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8 France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Norden AB: Torshamsgatan 35 16440 Kista, Sweden, Telephone: (39) 02-93581733, Fax: (39) 02-93581741 Italy: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (86) 10-6586-6006, Fax: (86) 10-6586-2866

Cat. No. KMPD1119E06 Feb. 2017 DN