

PHOTON IS OUR BUSINESS

CCD area image sensors

S10814 S10811-11

Front-illuminated FFT-CCD for X-ray imaging

The S10814 is an FFT-CCD image sensor suitable for intra-oral X-ray imaging in dental diagnosis. The S10814 has about 2 mega (1700×1200) pixels, each of which is $20 \times 20 \mu$ m in size. The FOP (fiber optic plate) used as an input window is as thin as 1.5 mm, making high resolution as well as highly resistant to X-ray irradiation. The scintillator coated on the FOP is optimized to have high X-ray sensitivity and high resolution (20 Lp/mm).

The S10811-11 is an easy-to-use X-ray imaging module using the S10814, with added functions such as a cable assembly and X-ray trigger circuit.

Features

- X-ray monitoring photodiode incorporated
- Compact size
- High dynamic range: 12-bit
- Long-term stability
- Resolution: 20 Lp/mm
- 1700 (H) × 1200 (V) pixel format
- Pixel size: 20 × 20 μm
- Coupled with FOS for X-ray imaging
- 100% fill factor
- Low dark signal
- Low readout noise
- MPP operation
- AC/DC X-ray source adapted

- Applications

- Intra-oral X-ray imaging in dental diagnosis
- General X-ray imaging
- Non-destructive inspection

These products are components for incorporation into medical and industrial device.

Structure

Parameter	S10814 S10811-11			
CCD structure	Full frame transfer			
Fill factor	100	0%		
Cooling	Non-c	cooled		
Number of pixels	1708 (H) >	< 1202 (V)		
Number of active pixels	1700 (H) × 1200 (V)			
Pixel size	20 (H) × 20 (V) µm			
Active area	34 (H) × 2	24 (V) mm		
Vertical clock phase	2 ph	ases		
Horizontal clock phase	2 ph	ases		
Output circuit	Emitter follower without load resistance			
Dimensions	37.8 (H) × 26.5 (V) mm 42.3 (H) × 30.0 (V) mm			
Window	FOS (scintillator on 1.5 mm FOP)			

Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage temperature	Tstg	-20	-	+70	°C
Operating temperature	Topr	0	-	+40	°C
Total dose irradiation	D	-	-	50	Gy
OD voltage	Vod	-0.5	-	+20	V
RD voltage	Vrd	-0.5	-	+18	V
SG voltage	Vsg	-15	-	+15	V
OG voltage	Vog	-15	-	+15	V
RG voltage	Vrg	-15	-	+15	V
TG voltage	Vtg	-15	-	+15	V
Vertical clock voltage	VP1V, VP2V	-15	-	+15	V
Horizontal clock voltage	Vp1h, Vp2h	-15	-	+15	V
Vcc voltage	Vcc	0	-	+7	V

Operating conditions (MPP mode, Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Output transistor drain voltage	5	Vod	12	15	-	V
Reset drain voltage		Vrd	12	13	14	V
Output gate voltage		Vog	-0.5	2	5	V
Substrate voltage		Vss	-	0	-	V
Vertical shift register	High	Vp1vh, Vp2vh	0	3	6	V
clock voltage	Low	VP1VL, VP2VL	-9	-8	-7	V
Horizontal shift register	High	Vp1hh, Vp2hh	0	3	6	V
clock voltage	Low	VP1HL, VP2HL	-9	-8	-7	V
Summing gate voltage	High	Vsgh	0	3	6	V
Summing gate voltage	Low	Vsgl	-9	-8	-7	V
Depat gate valtage	High	Vrgh	0	3	6	V
Reset gate voltage	Low	Vrgl	-9	-8	-7	V
Transfer gate valtage	High	Vtgh	0	3	6	V
Transfer gate voltage Low		Vtgl	-9	-8	-7	V
+5 V power supply voltage		Vcc	4.75	5	5.25	V

Electrical characteristics (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit	
Signal output frequency*1	Signal output frequency*1		-	1	-	MHz	
Vertical shift register capacita	ance	CP1V, CP2V	-	70000	-	pF	
Horizontal shift register	S10814		-	400	-		
capacitance	S10811-11	Ср1н, Ср2н	-	600	-	рF	
Cumming gate canacitance	S10814	Ccc	-	20	-	р Г	
Summing gate capacitance	S10811-11	Csg	-	220	-	pF	
Recet gate canacitance	S10814	Crg	-	20	-	pF	
Reset gate capacitance	S10811-11		-	220	-		
Transfer asta conscitance	S10814	C	-	250	-	р Г	
Transfer gate capacitance	S10811-11	Стб	-	450	-	– pF	
Charge transfer efficiency*2		CTE	0.99995	0.99998	-	-	
DC output level*3		Vout	5	8	11	V	
Output impedance*3		Zo	-	500	-	Ω	
Power dissipation*3 *4		Р	-	75	-	mW	
	S10814	Icc	-	1	-	mA	
+5 V power supply current	S10811-11	ICC	-	2	-		

*1: In case of the S10814, maximum frequency strongly depends on a peripheral circuit and cable length. *2: Measured at half of the full well capacity. CTE is defined per pixel.

*3: VOD=15 V

*4: Power dissipation of the on-chip amplifier

Electrical and optical characteristics (Ta=25 °C, VoD=15 V, unless otherwise noted)

Parameter		Symbol	Min.	Тур.	Max.	Unit		
		Vertical		100	200	-		
Full well cap	acity	Horizontal	Fw	-	300	-	ke⁻	
		Summing		-	600	-		
CCD node se	ensitivity* ⁵		Sv	1.0	1.4	-	μV/e⁻	
Dark current	: (MPP mode)*	6	DS	-	250	2500	e ⁻ /pixel/s	
Readout noi	co* ⁷	Ta=25 °C	Nr	-	90	-	e⁻ rms	
Reducut noi	SC	Ta=-40 °C	INI	-	60	-		
Dynamic rar	Ige* ⁸		DR	-	3333	-	-	
X-ray respor	ise non-unifori	mity* ^{9 *10}	XRNU	-	±10	±30	%	
	Point	White spots		-	-	20		
Blemish*11	defects*12	Black spots		-	-	20		
DIETTISTI	Cluster defects*13		_	-	-	3	-	
	Column defe	Column defects ^{*14}		-	-	1		
X-ray resolut	tion*9		ΔR	15	20	-	Lp/mm	

*5: VoD=15 V, RL (load resistance of emitter follower)=1 k Ω

*6: Dark signal doubles for every 5 to 7 °C.

*7: Operating frequency is 1 MHz.

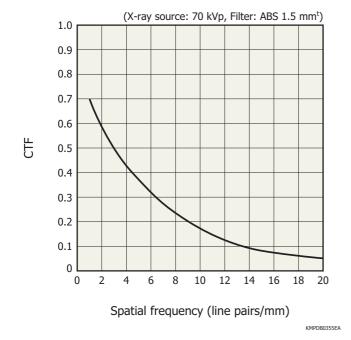
*8: Dynamic range = Full well capacity / Readout noise

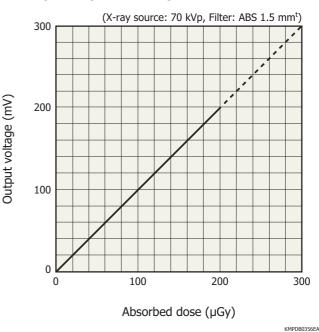
- *9: X-ray irradiation of 60 kVp, measured at half of the full well capacity
- *10: XRNU (%) = Noise / Signal × 100

Noise: Fixed pattern noise (peak to peak)

In the range that excludes 5 pixels from edges to the center at every position

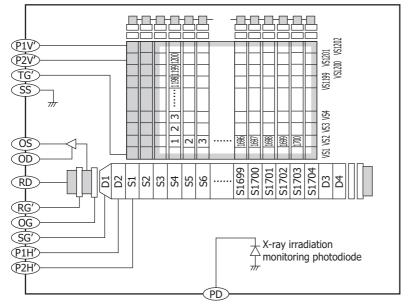
*11: Refer to "Characteristics and use of FFT-CCD area image sensor" of technical information.


*12: White spots > 10 times of Max. Dark signal (2500 e/pixel/s)


Black spots > 50% reduction in response relative to adjacent pixels, measured at half of the full well capacity *13: Continuous 2 to 9 point defects

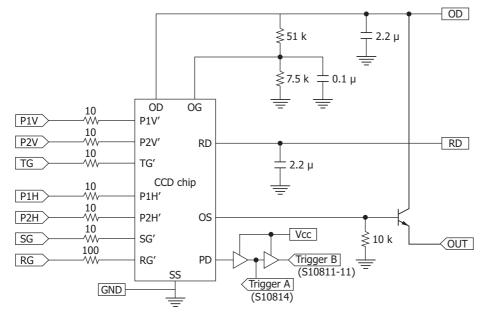
*14: Continuous \geq 10 point defects

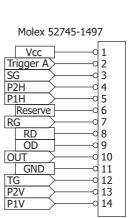
Resolution (S10811-11)


Response (S10811-11)

Device structure

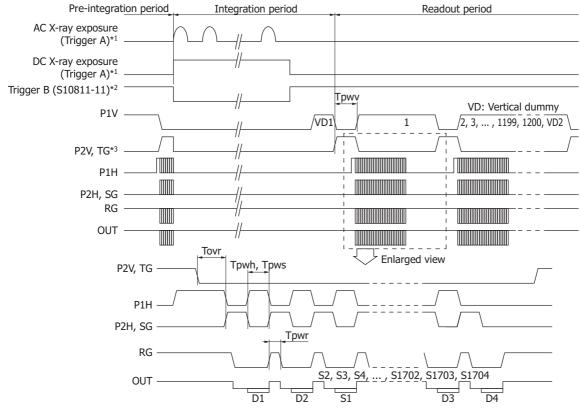
KMPDC0220EA


Pixel format


	Left \leftarrow Horizontal direction \rightarrow Right						
Blank	Optical black	Isolation	Effective	Isolation	Optical black	Blank	
2	2	1	1700	1	0	2	

Top \leftarrow Vertical direction \rightarrow Bottom					
Isolation Effective Isolation					
1 1200 1					

On-board circuit



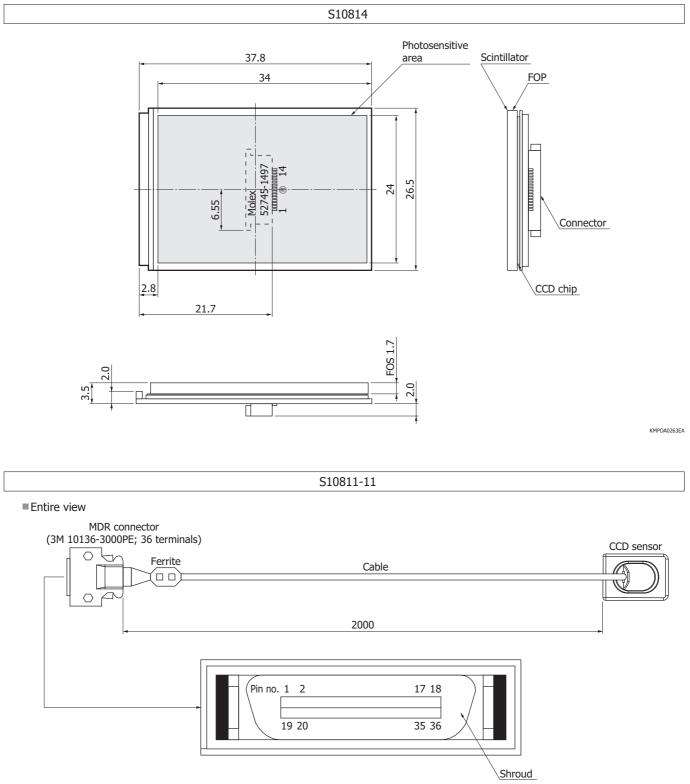
KMPDC0350EB

Timing chart

*1: Trigger A (S10814) is the same as AC/DC X-ray exposure form.

*2: Low active trigger pulse

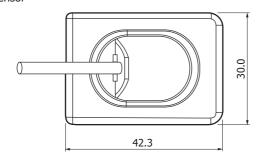
*3: TG terminal can be short-circuited to P2V terminal.

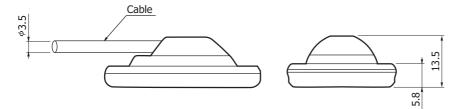

KMPDC0351EB

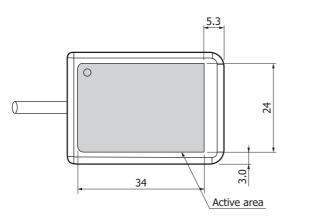
Paran	Symbol	Min.	Тур.	Max.	Unit	
	Pulse width*15	tpwv	30	60	-	μs
P1V, P2V, TG	Rise and fall times	tprv, tpfv	200	-	-	ns
	Pulse width	tpwh	100	500	-	ns
P1H, P2H	Rise and fall times ^{*15}	tprh, tpfh	5	-	-	ns
	Duty ratio	-	-	50	-	%
	Pulse width	tpws	100	500	-	ns
SG	Rise and fall times	tprs, tpfs	3	-	-	ns
	Duty ratio	-	-	50	-	%
RG	Pulse width	tpwr	10	50	-	ns
	Rise and fall times	tprr, tpfr	3	-	-	ns
TG-P1H	Overlap time	tovr	18	36	-	μs

*15: The clock pulses should be overlapped at 50% of maximum amplitude.

Dimensional outlines (unit: mm)


KMPDA0246EA


* The shield of cable and the shroud of MDR connector are short-circuited.


Take due care of EMC and ESD when connected to 0 V reference and the ground.

■CCD sensor

KMPDA0247EB

Pin connections

		S10814	
Pin no.	Symbol	Description	Remark
1	Vcc	Analog power +5 V	
2	Trigger A	Trigger A output	
3	SG	Summing gate	
4	P2H	CCD horizontal register clock-2	
5	P1H	CCD horizontal register clock-1	
6	Reserve		Should be opened
7	RG	Reset gate	
8	RD	Reset drain	
9	OD	Output transistor drain	
10	OUT	Signal output	
11	GND	Ground	
12	TG	Transfer gate	
13	P2V	CCD vertical register clock-2	
14	P1V	CCD vertical register clock-1	

		S10811-11	
Pin no.	Symbol	Description	Remark
1	GND	Ground	
2	Vcc	+5 V power supply	
3	SG	Summing gate	Same timing as P2H
4	Trigger B	Trigger B output	
5	RG	Reset gate	
6	NC		
7	Reserve		Should be opened
8	NC		
9	RD	Reset drain	
10	NC		
11	OD	Output transistor drain	
12	NC		
13	OUT	Sensor output	
14	NC		
15	GND	Ground	
16	NC		
17	P1V	CCD vertical register clock-1	
18	Reserve		Should be opened
19	Reserve		Should be opened
20	P2H	CCD horizontal register clock-2	
21	NC		
22	P1H	CCD horizontal register clock-1	
23	NC		
24	GND	Ground	
25	NC		
26	RD	Reset drain	
27	NC		
28	OD	Output transistor drain	
29	NC		
30	GND	Ground	
31	NC		
32	OUT	Sensor output	
33	NC		
34	P2V	CCD vertical register clock-2	
35	NC	-	
36	TG	Transfer gate	Same timing as P2V

Precautions

Electrostatic countermeasures

- · Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- · Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- · Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

Notice

• This product is warranted for a period of 12 months after the date of the shipment.

The warranty is limited to replacement or repair of any defective product due to defects in workmanship or materials used in manufacture. The warranty does not cover loss or damage caused by natural disaster, misuse (including modifications and any use not complying with the environment, application, usage and storage conditions described in this datasheet), or total radiation dose over 50 Gy (incident X-ray energy: 70 kVp) even within the warranty period.

Information described in this material is current as of April, 2014.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use.

Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8

Germany: hardamatsu Photonics Deductioning Grupp: Alzbergerstr. 10, D-62211 herrstrolling and Animersee, Germany, Telephone: (49) 612-237-0, Fax: (49) 6132-205-8 France: Hamamatsu Photonics France S.A.R.L.: 9, Rue du Saulti Trapu, Parc du Moulin de Massy, 91882 Massy, 01882, France, Talephone: 33-(1) 69 53 71 10, 58 53 71 00, Fax: 33-(1) 69 53 71 10, 58 53 71 00, Fax: 33-(1) 69 53 71 10, 58 53 71 00, Fax: 33-(1) 69 53 71 0, Fax: 33-(1) 69 53 71 10, Fax: 33-(1) 74 53-