

InGaAs linear image sensors

G13913 series

Near infrared image sensors for portable analytical instruments

Portable analytical instruments

The compact low-cost near infrared linear image sensors are designed for portable analytical instruments. They consume less current than the previous product (DIP package products: G11620 series). They are suitable for integration into compact thin devices because they employ a compact LCC package with a flexible board.

Features

Applications

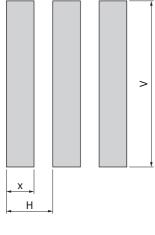
Compact (with flexible board)

- ⇒ 3.3 V drive
- Low current consumption: 15 mA (G13913-128FB)
- → Low cost
- 128 pixels (50 × 250 μm/pixel): G13913-128FB
- 256 pixels (25 × 250 µm/pixel): G13913-256FG
- Selectable from two conversion efficiency levels
- Built-in anti-saturation circuit
- Easy operation (built-in timing generator*1)
- High resolution: 25 µm pitch (G13913-256FG)

*1: Previously, multiple timing signals were applied using external PLD (programmable logic device) or the like to run the shift register. This image sensor has a built-in CMOS circuit for timing generation. All timing signals are generated inside the image sensor by simply applying CLK and RESET signals.

Selection guide

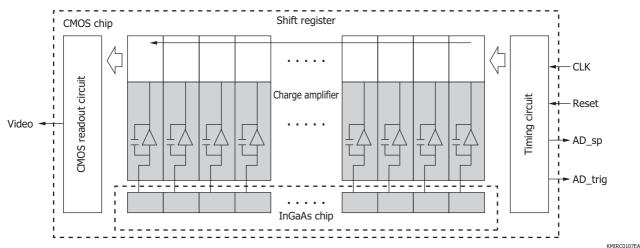
Type no.	Cooling	Image size (mm)	Total number of pixels	Number of effective pixels
G13913-128FB	Non-cooled	6.4 × 0.25	128	128
G13913-256FG	Non-cooled	0.4 × 0.25	256	256


Structure

Type no.	Pixel size [μm (H) × μm (V)]	Pixel pitch (µm)	Package	Window material
G13913-128FB	50 × 250	50	Ceramic with flexible board	Borosilicate glass*2
G13913-256FG	25 × 250	25	(refer to dimensional outline)	(no anti-reflective coating)

*2: Windowless types are also available.

1


Enlarged view of photosensitive area (unit: μm)

Type no.	х	Н	V
G13913-128FB	30	50	250
G13913-256FG	10	25	250

KMIRC0106EA

Block diagram

Absolute maximum ratings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vdd, INP, Fvref Vhold, PDN	Ta=25 °C	-0.3	-	+4.2	V
Clock pulse voltage	Vclk	Ta=25 °C	-0.3	-	+4.2	V
Reset pulse voltage	V(RES)	Ta=25 °C	-0.3	-	+4.2	V
Gain selection terminal voltage	Vcfsel	Ta=25 °C	-0.3	-	+4.2	V
Operating temperature	Topr	No dew condensation*3	-10	-	+60	°C
Storage temperature	Tstg	No dew condensation*3	-20	-	+70	°C

*3: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

Note: Absolute maximum ratings indicate values that must not be exceeded. Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Recommended terminal voltage (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd	3.0	3.3	3.6	V
Differential reference	voltage	Fvref	2.4	2.5	2.6	V
Sample hold voltage		Vhold	2.4	2.5	2.6	V
Input stage amplifier refer	ence voltage	INP	2.4	2.5	2.6	V
Photodiode cathode	voltage	PDN	2.4	2.5	2.6	V
Ground		GND	-	0	-	V
Clock pulse voltage	High	Vclk	Vdd - 0.25	Vdd	Vdd + 0.25	V
CIOCK pulse voltage	Low	VCIK	-	0	+0.25	v
Deast pulse veltage	High		Vdd - 0.25	Vdd	Vdd + 0.25	N
Reset pulse voltage	Low	V(RES)	-	0	+0.25	v

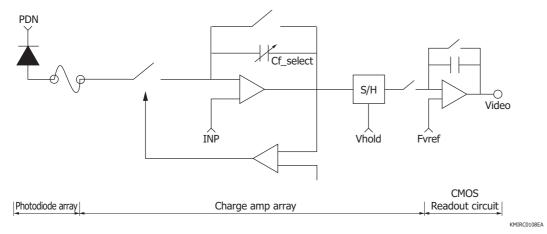
Electrical characteristics (Ta=25 °C)

Paramete	er	Symbol		Min.		Тур.	Max.	Unit	
		I(Vdd)	G13913-128FB	-		15	25		
			G13913-256FG	-		20	30	1	
Current consumptio	2		lfvref	-		-	1	mA	
Current consumptio	11	I	vhold	-		-	1	IIIA	
		Iinp		-		-	1		
			Ipdn		-	1			
Clock frequency	ck frequency		fop	0.1		1	2	MHz	
Data rate			DR	-	fop -		-	MHz	
Video output voltago	Dark	\ \	/dark	-		2.5	2.9	v	
Video output voltage	Saturation		Vsat	0.2		0.3	-	V	
Output offset voltage	je		Vos	-		Fvref	-		
Output impedance			Zo	-		6	-	kΩ	
	High	\/ +	ria Van	-		Vdd	-	v	
Pulse voltage	Low	VL	rig, Vsp	-		GND	-	V	

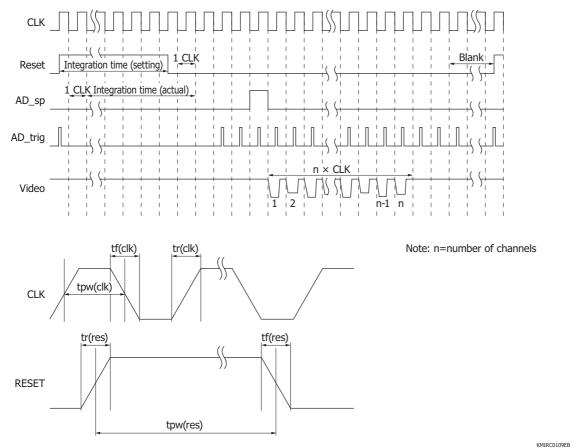
Electrical and optical characteristics (Ta=25 °C, Vdd=5 V, INP=Fvref=Vhold=PDN=2.5 V, Vclk=3.3 V, fop=1 MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Spectral response range	λ		-	0.95 to 1.7	-	μm
Peak sensitivity wavelength	λр		-	1.55	-	μm
Photosensitivity	S	λ=λp	0.7	0.82	-	A/W
Conversion efficiency*4	CE	Cf=10 pF	-	16	-	nV/e⁻
conversion enciency	CE	Cf=1 pF	-	160	-	IIV/e
Photoresponse nonuniformity*5	PRNU	CE=16 nV/e⁻	-	±5	±10	%
Coturation charge	Csat	CE=16 nV/e ⁻	125	137.5	-	Me⁻
Saturation charge		CE=160 nV/e-	12.5	13.75	-	Me
Saturation output voltage	Vsat	t=20 ms	2.0	2.2	-	V
Dark output	Vd	CE=16 nV/e ⁻	-	±0.1	±1	V/s
Dark current	ID	CE=16 nV/e ⁻	-	±5	±10	pА
Temperature coefficient of dark output (dark current)	-		-	1.1	-	times/°C
Readout noise*6	Nread	CE=16 nV/e ⁻	-	150	400	u\/ rmc
		CE=160 nV/e-	-	300	500	—µV rms
Dynamic range	Drange	CE=16 nV/e⁻	5000	14667	-	-
Defect pixels*7	-	CE=16 nV/e⁻	-	-	1	%

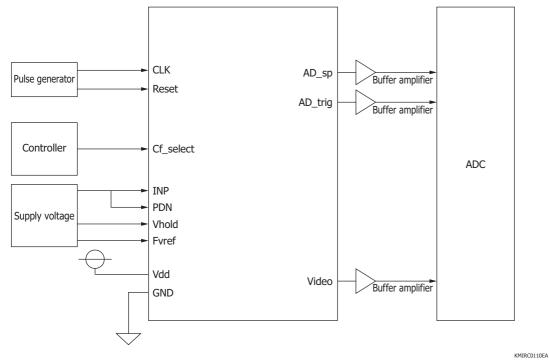
*4: For switching the conversion efficiency, see the pin connections.

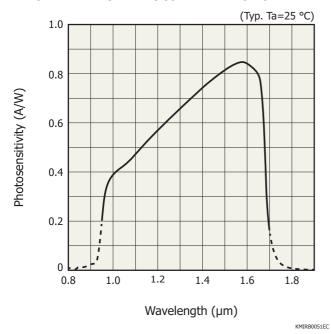

*5: Measured at 50% saturation and 10 ms integration time after subtracting the dark output, excluding the first and last pixels

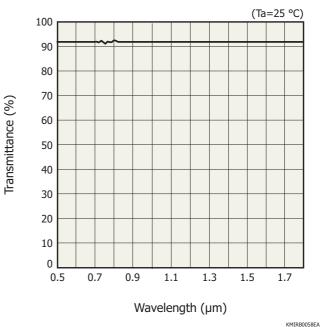
*6: Integration time when CE=16nV/e⁻ is 10 ms. Integration time when CE=160 nV/e⁻ is 1 ms.


*7: Pixels whose photoresponse nonuniformity, readout noise, or dark current is outside the specifications

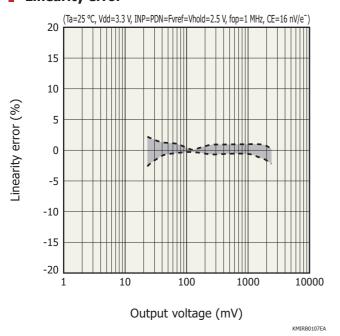
Equivalent circuit


Timing chart

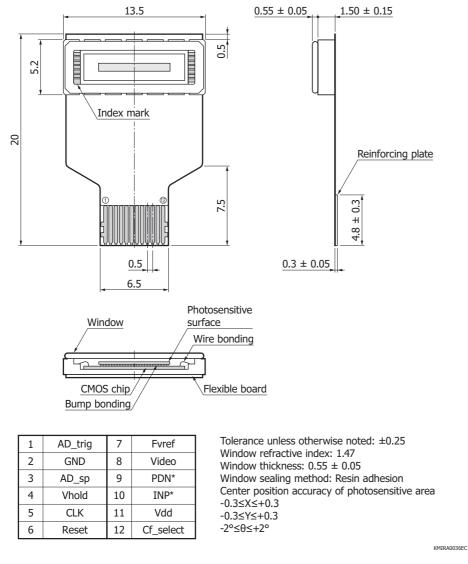

Parameter Symbol Min. Тур. Max. Unit Clock pulse frequency 0.1 2 MHz fop 1 Clock pulse width tpw(clk) 150 5000 _ ns Clock pulse rise/fall times 0 20 tr(clk), tf(clk) 30 ns High 2 --Reset pulse width clocks tpw(res) Low Number of pixels + 16 _ _ Reset pulse rise/fall times tr(res), tf(res) 20 30 0 ns



Spectral response (typical example)



Spectral transmittance of window material (typical example)



Linearity error

Dimensional outline (unit: mm)

Pin connections

Terminal name	Input/ output	Function and recommended connection			
PDN	Input	InGaAs photodiode's cathode bias terminal. Set to the same potential as INP.	2.5 V		
AD_sp	Output	Digital start signal for A/D conversion	0 to 3.3 V		
Cf_select	Input*8	Signal for selecting the feedback capacitance (integration capacitance) on the CMOS chip	0 to 3.3 V		
AD_trig	Output	Sampling sync signal for A/D conversion	0 to 3.3 V		
Reset	Input	Reset pulse for initializing the feedback capacitance in the charge amplifier formed on the CMOS chip. Integration time is determined by the high level period of this pulse.	0 to 3.3 V		
CLK	Input	Clock pulse for operating the CMOS shift register	0 to 3.3 V		
INP	Input	Input stage amplifier reference voltage. This is the supply voltage for operating the signal processing circuit on the CMOS chip. Set to the same potential as PDN.	2.5 V		
Vhold	Input	Reference voltage for sample-and-hold circuit. This is the supply voltage for operating the signal processing circuit on the CMOS chip.	2.5 V		
Fvref		Differential amplifier reference voltage. This is the supply voltage for operating the signal processing circuit on the CMOS chip.	2.5 V		
Video	Output	Differential amplifier output. This is an analog video signal. Nagative polarity.	0.3 to 2.5 V		
Vdd	Input	Supply voltage for operating the signal processing circuit on the CMOS chip (+3.3 V)	3.3 V		
GND	Input	Ground for the signal processing circuit on the CMOS chip (0 V)	0 V		

*8: The conversion efficiency is determined by the supply voltage to the Cf_select terminal as follows.

Conversion efficiency	Cf_select
16 nV/e⁻ (low gain)	Low
160 nV/e⁻ (high gain)	High
, (33)	5

Low: 0 V (GND), High: 3.3 V (Vdd)

Electrostatic countermeasures

This device has a built-in protection circuit against static electrical charges. However, to prevent destroying the device with electrostatic charges, take countermeasures such as grounding yourself, the workbench and tools. Also protect this device from surge voltages which might be caused by peripheral equipment.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- · Disclaimer
- · Safety precautions
- Image sensors

Information described in this material is current as of October 2019.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1120-1 ICHINO-CRO, HIGJASIN-KU, HamamatuSU LUV, 453-6535 Japari, Helephone: (31)53-434-3311, FAX: (31)53-434-3149 U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1)908-231-1218, E-mail: usa@hamamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (49)8152-375-0, Fax: (43)16 95 37 1 10, E-mail: info@hamamatsu.de Noited Kingdom: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Bellu, Chaoyang District, 100020 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866, E-mail: hpc@hamamatsu.co.m.tw