

# **CMOS linear image sensor**

HAMAMATSU PHOTON IS OUR BUSINESS

S15611

## 40 MHz operation, digital output

The S15611 is a CMOS linear image sensor that has achieved a readout speed of 40 MHz max. and a line rate of 34 kHz max. The image sensor has a timing generator, bias generator, 12-bit A/D converter, and is easy to handle because of its digital I/O.

#### Features

- Pixel size: 7 × 200 μm
- 1024 pixels
- Effective photosensitive area length: 7.168 mm
- High-speed readout: 40 MHz max.
- Simultaneous integration of all pixels
- With variable integration time function (electronic shutter function)
- Single 3.3 V supply voltage operation
- SPI communication function (partial readout, offset adjustment)
- Built-in 12-bit A/D converter

#### Structure

| Parameter                            | Specification      | Unit |
|--------------------------------------|--------------------|------|
| Number of pixels                     | 1024               | -    |
| Pixel pitch                          | 7                  | μm   |
| Pixel height                         | 200                | μm   |
| Effective photosensitive area length | 7.168              | mm   |
| Package                              | Ceramic            | -    |
| Window material                      | Borosilicate glass | -    |

#### Absolute maximum ratings

| Par                              | Parameter        |          | Condition                        | Value         | Unit |
|----------------------------------|------------------|----------|----------------------------------|---------------|------|
| Supply voltage                   | Analog terminal  | Vdd(A)   | Ta=25 °C                         | -0.3 to +3.9  | V    |
| Supply voltage                   | Digital terminal | Vdd(D)   | Ta=25 °C                         | -0.3 to +3.9  | v    |
| Digital input terminal voltage*1 |                  | Vi       | Ta=25 °C                         | -0.3 to +3.9  | V    |
| Vref_cp1 terminal voltage        |                  | Vref_cp1 | Ta=25 °C                         | -0.3 to +6.5  | V    |
| Vref_cp2 terminal voltage        |                  | Vref_cp2 | Ta=25 °C                         | -2.0 to +0.3  | V    |
| Operating temperature            |                  | Topr     | No dew condensation*2            | -5 to +70     | °C   |
| Storage temperature              |                  | Tstg     | No dew condensation*2 -10 to +70 |               | °C   |
| Soldering temperature*3          |                  | Tsol     |                                  | 260 (3 times) | °C   |

\*1: MOSI, SCLK, CS, RSTB, MCLK, MST

\*2: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.
\*3: Reflow soldering, JEDEC J-STD-020 MSL 4, see P.12

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

## Applications

- Encoders
- Position detection
- Machine vision

#### Recommended terminal voltage (Ta=25 °C)

| Parameter        |                  | Symbol | Min. | Тур.   | Max.          | Unit |  |
|------------------|------------------|--------|------|--------|---------------|------|--|
| Cupply voltage   | Analog terminal  | Vdd(A) | 3.15 | 3.3    | 3.6           | V    |  |
| Supply voltage   | Digital terminal | Vdd(D) | 3.15 | 3.3    | 3.6           | v    |  |
| Digital input    | High level       | Vi(H)  | 3    | Vdd(D) | Vdd(D) + 0.25 | V    |  |
| terminal voltage | Low level        | Vi(L)  | 0    | -      | 0.3           | V    |  |

#### Electrical characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V]

| Parameter                    |            | Symbol | Min.          | Тур.    | Max. | Unit |
|------------------------------|------------|--------|---------------|---------|------|------|
| Master clock pulse frequency |            | MCLK   | 5             | -       | 40   | MHz  |
| Data rate                    |            | DR     | -             | f(MCLK) | -    | MHz  |
| Line rate <sup>*4</sup>      |            | FR     | -             | -       | 34   | kHz  |
|                              | High level | Vdo(H) | Vdd(D) - 0.25 | Vdd(D)  | -    | N/   |
| Digital output voltage       |            | Vdo(L) | -             | 0       | 0.25 | v    |
| Current consumption*5        |            | Ic     | -             | 160     | 200  | mA   |

\*4: When all pixels (1024 pixels) are read out

\*5: f(MCLK)=40 MHz

Current consumption changes according to the master clock pulse frequency.

#### Electrical and optical characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V, f(MCLK)=40 MHz]

| Parameter                     | Symbol  | Min.  | Тур.        | Max.  | Unit              |
|-------------------------------|---------|-------|-------------|-------|-------------------|
| Spectral response range       | λ       |       | 400 to 1000 |       | nm                |
| Peak sensitivity wavelength   | λр      | -     | 700         | -     | nm                |
| Photosensitivity*6            | Sw      | -     | 1350        | -     | V/(lx·s)          |
| Photosensitivity °            | 500     | -     | 2765 k      | -     | $DN/(lx \cdot s)$ |
| Conversion efficiency         | CE      | -     | 40          | -     | µV/e⁻             |
| Photoresponse nonuniformity*7 | PRNU    | -     | ±5          | ±10   | %                 |
| Dark output <sup>*8</sup>     | VD      | -     | 1.2         | 12    | mV                |
|                               | VD      | -     | 2.5         | 25    | DN                |
| Saturation charge             | Qsat    | 42    | 43          | -     | ke⁻               |
| Saturation output             | Veet    | 1.47  | 1.71        | -     | V                 |
| Saturation output             | Vsat    | 3000  | 3500        | -     | DN                |
| Readout noise*9               | Nread   | -     | 0.63        | 1.9   | mV rms            |
| Redubut Holse                 | Niedu   | -     | 1.3         | 3.9   | DN rms            |
| Dynamic range <sup>*10</sup>  | Drange  | -     | 2700        | -     | -                 |
| Output offeet*11              | Voffset | 0.122 | 0.244       | 0.366 | mV                |
| Output offset*11              | voliset | 250   | 500         | 750   | DN                |
| Image lag <sup>*12</sup>      | Lag     | -     | -           | 0.1   | %                 |

\*6: 2856 K, tungsten lamp

\*7: Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly illuminated by light which is 50% of the saturation exposure level. PRNU is measured using 1018 pixels excluding the 3 pixels at both ends, and is defined as follows:

 $PRNU=\Delta X/X \times 100 [\%]$ 

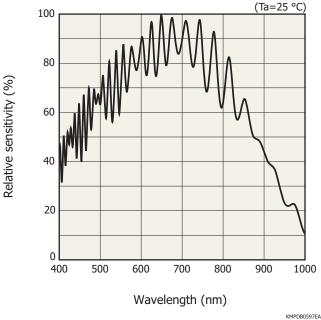
X: average output of all pixels,  $\Delta X$ : difference between the maximum or minimum output and X

\*8: Ts=10 ms, difference from the offset output

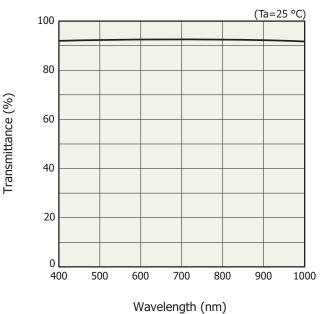
\*9: Dark state

\*10: Vsat/Nread

\*11: Initial value. The offset level can be changed through the SPI.

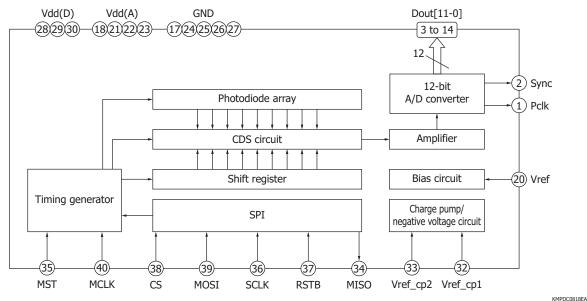

\*12: If output of the previous frame exceeds the saturation output, it is the signal that remains in the next frame.




Electrical and optical characteristics [A/D converter, Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V]

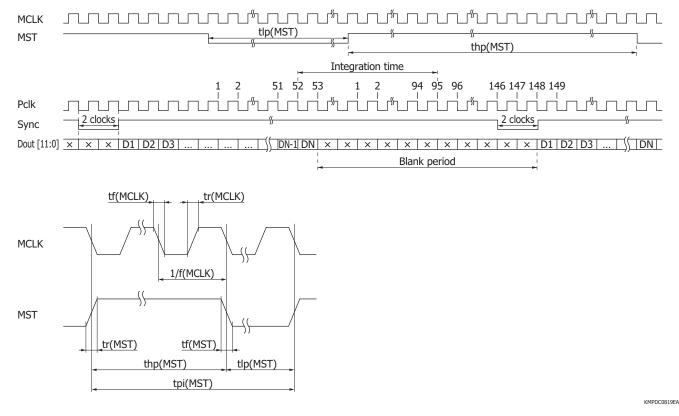
| Parameter                | Symbol | Value     | Unit |
|--------------------------|--------|-----------|------|
| Resolution               | RESO   | 12        | bit  |
| Conversion time          | tCON   | 1/f(MCLK) | S    |
| Conversion voltage range | -      | 0 to 2    | V    |






#### Spectral transmittance characteristics of window material (typical example)




KMPDB0585EA

## Block diagram



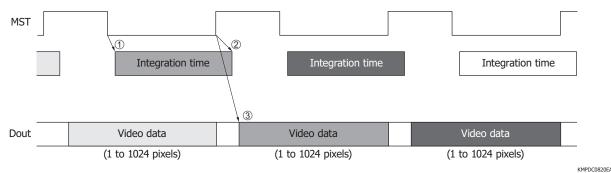


## Timing chart



Parameter Symbol Min. Тур. Max. Unit Master start pulse period\*13\*14 tpi(MST) 1162/f(MCLK) -s Master start pulse high period thp(MST) 167/f(MCLK) -s Master start pulse low period\*15 tlp(MST) 16/f(MCLK) \_ \_ s Master start pulse rise and fall times tr(MST), tf(MST) 5 7 ns Master clock pulse duty 45 50 55 % Master clock pulse rise and fall times tr(MCLK), tf(MCLK) -5 7 ns

\*13: When 1024 pixels are read out


\*14: The period is (138 + N)/f(MCLK) when N pixels are read out.

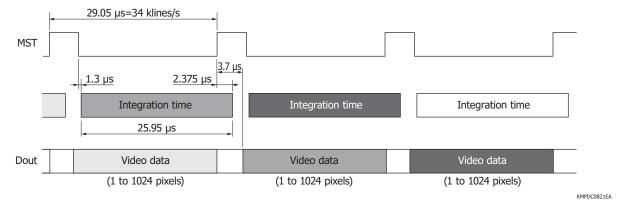
\*15: The integration time corresponds to the low period of the master start pulse + 43 cycles of MCLK. The integration time can be changed by changing the ratio of the high and low periods of master start pulse. If the first Pclk after the master start pulse goes high is assumed to be the first edge, the video signal output is started at the 148th falling edge of Pclk. Since the start of the video output is simultaneous with the rising edge of Sync, acquire the video signal in reference to Sync.



#### Description of operation

The integration time is determined by the low period of the master start pulse.




① The start of integration time is determined by the falling edge of the master start pulse.

② The end of integration time is determined by the rising edge of the master start pulse.

③ Video data is output after the rising edge of the master start pulse. Video data is output in order from the first pixel. Note: Signal integration is possible even during video data output.

## - Operation example

Line rate=34 klines/s, master start pulse frequency=40 MHz, maximum integration time

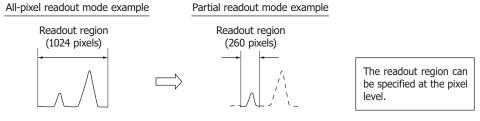


· Master start pulse period=1162/f(MCLK)=29.05 µs (line rate is reciprocal of start pulse period)

 Master start pulse low period=Master start pulse period - Minimum period of master start pulse high period =1162/f(MCLK) - 167/f(MCLK)=1162/40 MHz - 167/40 MHz=995/40 MHz=24.875 μs

• Integration time=Master start pulse low period + Master clock pulse 43 cycles=(995 + 43)/40 MHz=25.95  $\mu$ s Sync rises approximately 3.7  $\mu$ s after the rising edge of the master start pulse. Then the video output signal is output in order from the first pixel.




#### SPI (serial peripheral interface) address

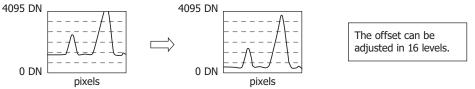
| Address   | Dogistor    | Initial   | value   | Setting                                                  |
|-----------|-------------|-----------|---------|----------------------------------------------------------|
| (decimal) | Register    | Binary    | Decimal | Setting                                                  |
| 11        | Win_S[10:8] | 0000      | 0       | Readout start pixel (11-bit)                             |
| 12        | Win_S[7:0]  | 0000 0000 | 0       | (Initial setting: 0)                                     |
| 15        | Win_W[10:8] | 0100      | 1024    | Number of readout pixels (11-bit)                        |
| 16        | Win_W[7:0]  | 0000 0000 | 1024    | (Initial setting: 1024)                                  |
| 18        | SubsH[1:0]  | 00        | 0       | Number of skipped pixels (2-bit)<br>(Initial setting: 0) |
| 22        | Offset[3:0] | 0111      | 7       | Offset shift (4-bit)<br>(Initial setting: 7)             |

Note: Be sure to set the addresses shown in the above table. Setting to the addresses not shown in the above table may cause malfunction.

#### Setting the partial readout region

The partial readout region can be specified at the pixel level. The line rate can be increased by reducing the number of readout pixels.



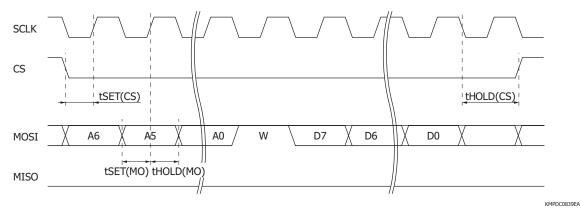

The maximum line rate=34 kline/s

The maximum line rate=100 kline/s

KMPDC0822EA

Setting the offset

The offset can be adjusted in 16 levels. The conversion range of the A/D converter can be used effectively by setting the appropriate offset.

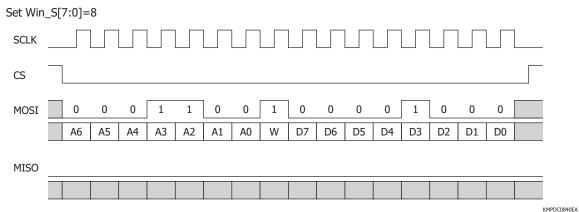



KMPDC0512EA



## Setting using the SPI

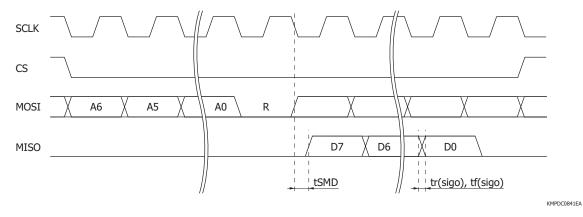
Set the SPI using SCLK, CS, and MOSI. Changing RSTB to low level resets all parameters to the initial settings.




#### [Ta=25 °C, Vdd(A)=Vdd(D)=Vdd(C)=3.3 V]

| Parameter                                     | Symbol    | Min. | Тур. | Max. | Unit |
|-----------------------------------------------|-----------|------|------|------|------|
| SPI clock pulse frequency                     | f(SCLK)   | -    | 7.5  | 10   | MHz  |
| SPI setup time (CS)                           | tSET(CS)  | 7    | -    | -    | ns   |
| SPI hold time (CS)                            | tHOLD(CS) | 7    | -    | -    | ns   |
| SPI setup time (MOSI)                         | tSET(MO)  | 7    | -    | -    | ns   |
| SPI hold time (MOSI)                          | tHOLD(MO) | 7    | -    | -    | ns   |
| Digital input signal rise time <sup>*16</sup> | tr(sigi)  | -    | 5    | 7    | ns   |
| Digital input signal fall time*16             | tf(sigi)  | -    | 5    | 7    | ns   |

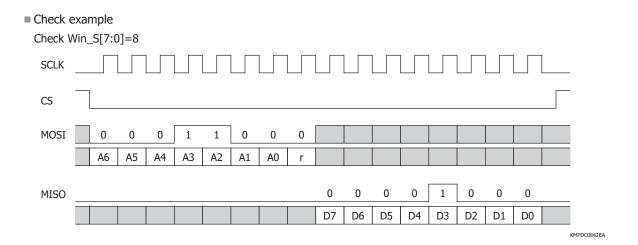
\*16: Time for the input voltage to rise or fall between 10% and 90%


#### Setting example



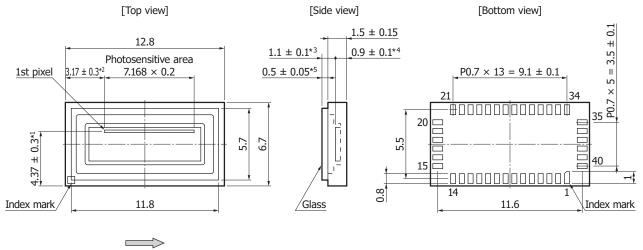


## - Confirm SPI settings


You can check the current SPI settings in the following manner.



#### [Ta=25 °C, Vdd(A)=Vdd(D)=Vdd(C)=3.3 V]


| Parameter                   | Symbol   | Min. | Тур. | Max. | Unit |
|-----------------------------|----------|------|------|------|------|
| Output signal rise time*17  | tr(sigo) | -    | 10   | 12   | ns   |
| Output signal fall time*17  | tf(sigo) | -    | 10   | 12   | ns   |
| SCLK-MISO output delay time | tSMD     | -    | -    | 25   | ns   |

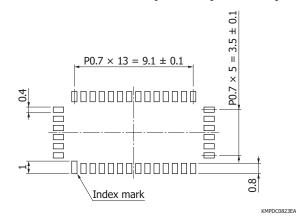
\*17: Time for the output voltage to rise or fall between 10% and 90% when the load capacitance of the output terminal is 10 pF





#### Dimensional outline (unit: mm)

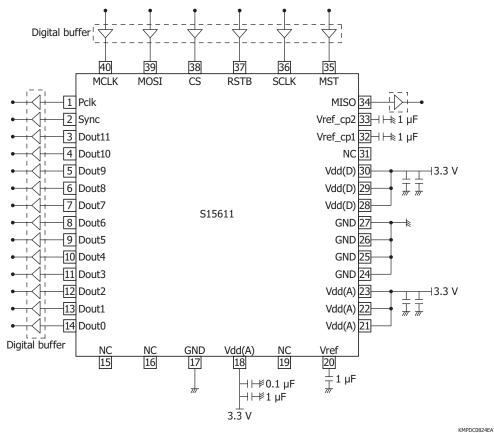



Direction of scan

Tolerance unless otherwise noted: ±0.2

- \*1: Distance from package edge to photosensitive area center
- \*2: Distance from package edge to photosensitive area edge \*3: Distance from glass surface to photosensitive surface
- \*4: Distance from package bottom to photosensitive surface

\*5: Glass thickness

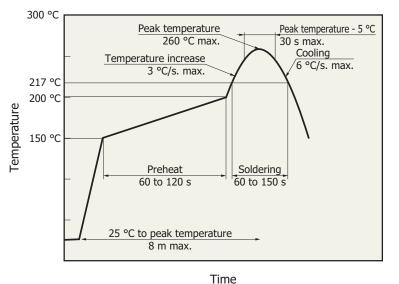

Recommended land pattern (unit: mm)





KMPDA0357EA






## Pin connections

| Pin no. | Symbol      | Description                               | I/O |
|---------|-------------|-------------------------------------------|-----|
| 1       | Pclk        | Pixel output sync signal                  | 0   |
| 2       | Sync        | Frame sync signal                         | 0   |
| 3       | Dout11      | Video output signal (MSB)                 | 0   |
| 4       | Dout10      | Video output signal                       | 0   |
| 5       | Dout9       | Video output signal                       | 0   |
| 6       | Dout8       | Video output signal                       | 0   |
| 7       | Dout7       | Video output signal                       | 0   |
| 8       | Dout6       | Video output signal                       | 0   |
| 9       | Dout5       | Video output signal                       | 0   |
| 10      | Dout4       | Video output signal                       | 0   |
| 11      | Dout3       | Video output signal                       | 0   |
| 12      | Dout2       | Video output signal                       | 0   |
| 13      | Dout1       | Video output signal                       | 0   |
| 14      | Dout0       | Video output signal (LSB)                 | 0   |
| 15      | NC*18       | No connection                             | -   |
| 16      | NC*18       | No connection                             | -   |
| 17      | GND         | Ground                                    | -   |
| 18      | Vdd(A)      | Analog supply voltage (3.3 V)             | I   |
| 19      | NC*18       | No connection                             | -   |
| 20      | Vref*19     | Reference voltage                         | 0   |
| 21      | Vdd(A)      | Analog supply voltage (3.3 V)             | I   |
| 22      | Vdd(A)      | Analog supply voltage (3.3 V)             | I   |
| 23      | Vdd(A)      | Analog supply voltage (3.3 V)             | I   |
| 24      | GND         | Ground                                    | -   |
| 25      | GND         | Ground                                    | -   |
| 26      | GND         | Ground                                    | -   |
| 27      | GND         | Ground                                    | -   |
| 28      | Vdd(D)      | Digital supply voltage (3.3 V)            | I   |
| 29      | Vdd(D)      | Digital supply voltage (3.3 V)            | I   |
| 30      | Vdd(D)      | Digital supply voltage (3.3 V)            | I   |
| 31      | NC*18       | No connection                             | -   |
| 32      | Vref_cp1*19 | Bias voltage for charge pump circuit      | 0   |
| 33      | Vref_cp2*19 | Bias voltage for negative voltage circuit | 0   |
| 34      | MISO        | SPI output signal                         | 0   |
| 35      | MST         | Master start signal                       | I   |
| 36      | SCLK        | SPI clock signal                          | I   |
| 37      | RSTB        | SPI reset signal                          | I   |
| 38      | CS          | SPI selection signal                      | I   |
| 39      | MOSI        | SPI input signal                          | I   |
| 40      | MCLK        | Master clock signal                       | I   |

\*18: Leave NC pins open; do not connect to GND. \*19: Insert a 1  $\mu$ F capacitor between the terminal and GND.





#### Recommended reflow soldering conditions (typical example)

• This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity of 60% or less, and perform soldering within 72 hours.

KMPDB0405EA

- The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. When you set reflow soldering conditions, check that problems do not occur in the product by testing out the conditions in advance.
- The bonding portion between the ceramic base and the glass may discolor after reflow soldering, but this has no adverse effects on the hermetic sealing of the product.

#### Precautions

#### (1) Electrostatic countermeasures

This device has a built-in protection circuit against static electrical charges. However, to prevent destroying the device with electrostatic charges, take countermeasures such as grounding yourself, the workbench and tools to prevent static discharges. Also protect this device from surge voltages which might be caused by peripheral equipment.

(2) Input window

If dirt or dust adheres to the surface of the input window glass, the photoresponse uniformity will be lost. When cleaning, avoid rubbing the window surface with dry cloth, dry cotton swab or the like, since doing so may generate static electricity. Use soft cloth, paper, a cotton swab, or the like moistened with alcohol to wipe off dust and stain. Then blow compressed air so that no stain remains.

(3) Operating and storage environments

Handle the device within the range of the absolute maximum ratings. Operating or storing the device at an excessively high temperature and humidity may cause variations in performance characteristics and must be avoided.

#### (4) UV light irradiation

This product is not designed to resist characteristic deterioration under UV light irradiation. Do not apply UV light irradiation.



#### Related information

www.hamamatsu.com/sp/ssd/doc\_ja.html

- Precautions
- Disclaimer
- · Image sensors
- Surface mount type products

Information described in this material is current as of September 2020.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.



## www.hamamatsu.com

#### HAMAMATSU PHOTONICS K.K., Solid State Division

HAMAMATSU PHOTOVILS K.K., Solid State Division 1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184 U.S.A: Hamamatsu Photonics: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218, E-mail: usa@hamamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching an Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching an Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (43)16 95 37 1 00, Fax: (33)16 95 37 1 10, E-mail: info@hamamatsu.de Ninted Kingdom: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Itala S.r.L: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Itala S.r.L: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (40)920-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Italia S.r.L: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (40)2020 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866, E-mail: info@hamamatsu.et Thia: Hamamatsu Photonics Italia S.r.L: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (10020 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866, E-mail: info@hamamatsu.et Thia: Hamamatsu Photonics Taiwan Co., Ltd: 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, Hoino2020 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866, E-mail: info@

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.