

CMOS linear image sensors

NEW

S15739 series

High sensitivity, photosensitive area with vertically long pixels

The S15739 series is a high sensitivity CMOS linear image sensor using a photosensitive area with vertically long pixels (14 × 200 µm). Other features include high sensitivity and high resistance in the UV region. The S15739 series operates from a single 5 V supply making it suitable for use in low cost spectrometers. The S15739-1024-20 is provided in a surface mount type package.

Features

- Pixel size: 14 × 200 µm
- 1024 pixels
- Effective photosensitive area length: 14.336 mm
- High sensitivity: 1300 V/(lx·s)
- High sensitivity in the UV to NIR region (spectral response range: 200 to 1000 nm)
- Simultaneous charge integration for all pixels
- Variable integration time function (electronic shutter function)
- 5 V single power supply operation
- Built-in timing generator allows operation with only start and clock pulse inputs
- Video data rate: 10 MHz max.

Applications

- Spectrophotometry
- Position detection
- Image reading
- Encoders

Structure

Parameter	S15739-1024	S15739-1024-20	Unit		
Number of pixels	1024				
Pixel size	14 × 200				
Photosensitive area length	14.336				
Package	LCP (liquid crystal polymer) Surface mount type ceramic				
Window material	Quartz				

Absolute maximum ratings

Parameter	Symbol	Condition	S15739-1024 S15739-1024-20		Unit
Supply voltage	Vdd	Ta=25 °C	-0.3	V	
Clock pulse voltage	V(CLK)	Ta=25 °C	-0.3	V	
Start pulse voltage	V(ST)	Ta=25 °C	-0.3	to +6	V
Operating temperature	Topr	No dew condensation*1	-40 to	°C	
Storage temperature	Tstg	No dew condensation*1	-40 to +65		°C
Soldering temperature	Tsol		*2 260 (twice)*3		°C

*1: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

*2: See the recommended soldering conditions (P.11).

*3: Reflow soldering, IPC/JEDEC J-STD-020 MSL2a, see P.11

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product guality. Always be sure to use the product within the absolute maximum ratings.

Recommended terminal voltage (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd	4.75	5	5.25	V
	High level		3	Vdd	Vdd + 0.25	V
Clock pulse voltage	Low level	V(CLK)	0	-	0.3	v
	High level	V/(CT)	3	Vdd	Vdd + 0.25	V
Start pulse voltage	Low level	V(ST)	0	-	0.3	V

Input terminal capacitance (Ta=25 °C, Vdd=5 V)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock pulse input terminal capacitance	C(CLK)	-	5	-	pF
Start pulse input terminal capacitance	C(ST)	-	5	-	pF

Electrical characteristics [Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V]

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock pulse frequency	f(CLK)	200 k	-	10 M	Hz
Data rate	DR	-	f(CLK)	-	Hz
Output impedance	Zo	70	-	260	Ω
Current consumption*4 *5	Ic	15	25	35	mA

*4: f(CLK)=10 MHz

*5: Current consumption increases as the clock pulse frequency increases. The current consumption is 10 mA typ. at f(CLK)=200 kHz.

Electrical and optical characteristics [Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V, f(CLK)=10 MHz]

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Spectral response range	λ		200 to 1000			
Peak sensitivity wavelength	λр	-	700	-	nm	
Photosensitivity*6	Sw	-	1300	-	$V/(lx \cdot s)$	
Conversion efficiency*7	CE	-	25	-	µV/e⁻	
Dark output voltage*8	Vd	0	0.2	2.0	mV	
Saturation output voltage*9 *10	Vsat	1.5	2.0	2.5	V	
Readout noise	Nread	0.1	0.4	1.2	mV rms	
Dynamic range 1 ^{*11}	Drange1	-	5000	-	times	
Dynamic range 2 ^{*12}	Drange2	-	10000	-	times	
Output offset voltage	Voffset	0.3	0.6	0.9	V	
Photoresponse nonuniformity*6 *9 *13	PRNU	-	-	±10	%	
Image lag ^{*14}	Lag	-	-	0.1	%	

*6: Measured with a tungsten lamp of 2856 K

*7: Output voltage generated per electron

*8: Integration time=10 ms

*9: Voltage difference from Voffset

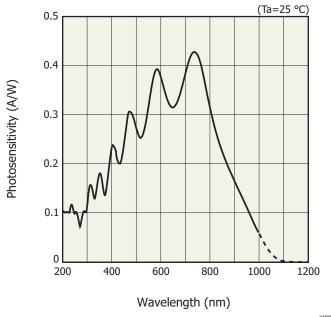
*10: CDS (correlated double sampling) is done inside the image sensor in order to reduce noise. The final output is the difference between the output when the photosensitive area is put in the reset state, and the light output integrated in the photosensitive area. If used in an over-saturated state, the light output component may get mixed into the output when the photosensitive area is put in the reset state, causing the final output to decrease.

*11: Drange1 = Vsat/Nread

*12: Drange2 = Vsat/Vd

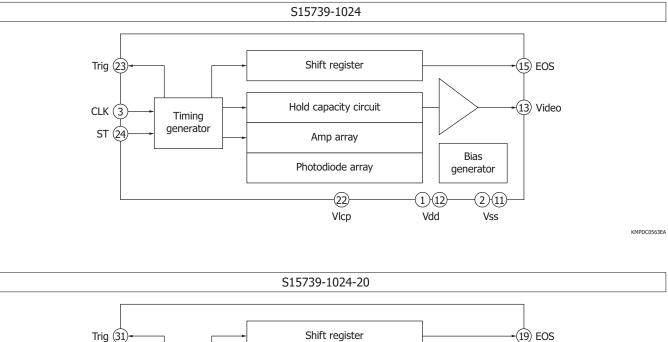
Integration time=10 ms

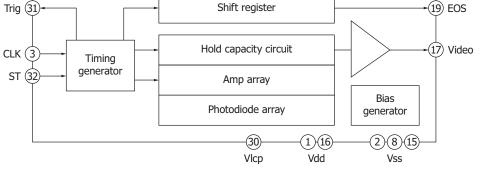
Dark output voltage is proportional to the integration time and so the shorter the integration time, the wider the dynamic range. *13: Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly illuminated by light which is 50% of the saturation exposure level. PRNU is measured using 1018 pixels excluding 3 pixels each at both ends, and is defined as follows:


 $\mathsf{PRNU}=\Delta X/X \times 100 \ (\%)$

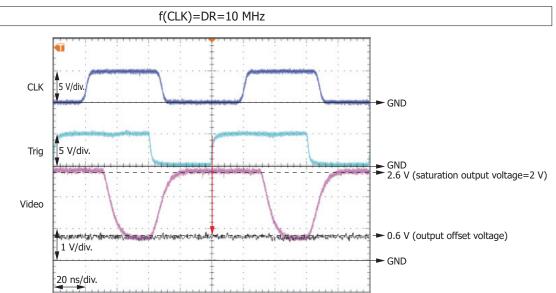
X: average of the output of all pixels, ΔX : difference between X and maximum output or minimum output

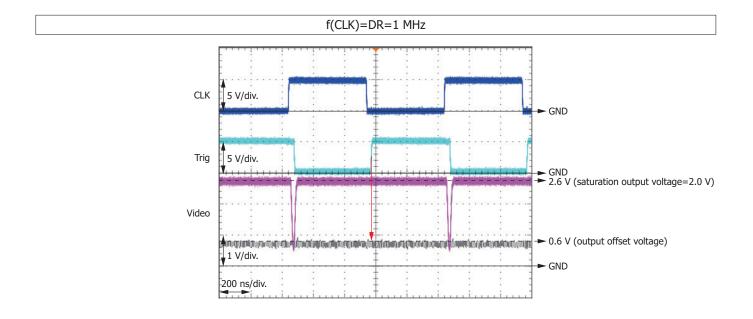
*14: Signal components of the preceding line data that still remain even after the data is read out in a saturation output state. Image lag increases when the output exceeds the saturation output voltage.





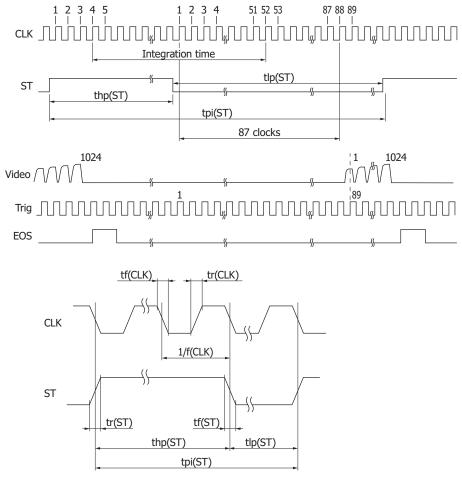
Block diagram





KMPDC0857EA

Output waveform of a pixel


The timing for acquiring the Video signal is synchronized with the rising edge of a trigger pulse (See red arrow below).

Timing chart

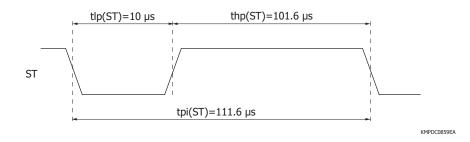
KMPDC0858EA

Parameter	Symbol	Min.	Тур.	Max.	Unit
Start pulse period	tpi(ST)	106/f(CLK)	-	-	S
Start pulse high period ^{*15}	thp(ST)	6/f(CLK)	-	-	S
Start pulse low period	tlp(ST)	100/f(CLK)	-	-	S
Start pulse rise/fall times	tr(ST), tf(ST)	0	10	30	ns
Clock pulse duty	-	45	50	55	%
Clock pulse rise/fall times	tr(CLK), tf(CLK)	0	10	30	ns

*15: The integration time equals the high period of ST plus 48 CLK cycles. The shift register starts operation at the rising edge of CLK immediately after ST goes low.

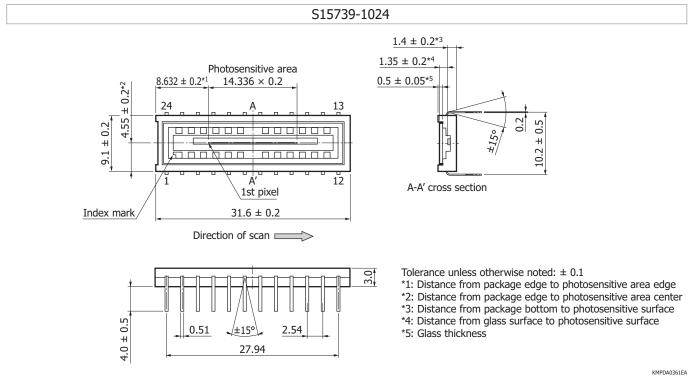
The integration time can be changed by changing the ratio of the high and low periods of ST.

If the first Trig pulse after ST goes low is counted as the first pulse, the Video signal is acquired at the rising edge of the 89th Trig pulse.



Operation example

When outputting from all 1024 pixels

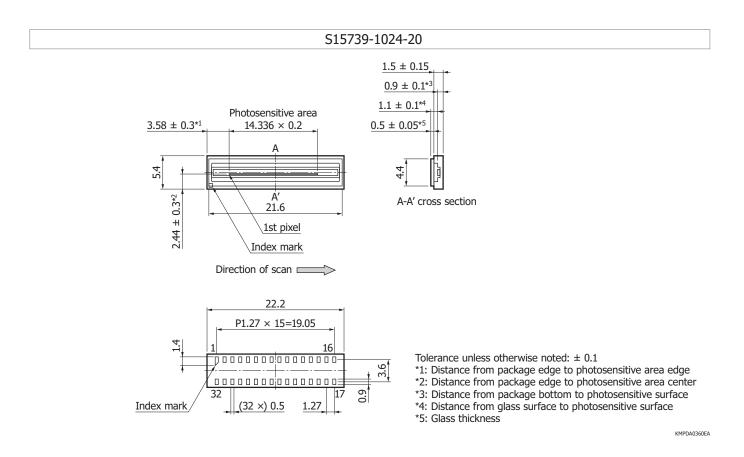

This example assumes that the clock pulse frequency is minimized (data rate is also minimized), the time of one scan is minimized, and the integration time is maximized.

Clock pulse frequency=Data rate=10 MHz Start pulse cycle=1116/f(CLK)=1116/10 MHz=111.6 μ s High period of start pulse =Start pulse cycle - Start pulse's low period min. =1116/f(CLK) - 100/f(CLK)=1116/10 MHz - 100/10 MHz=101.6 μ s Integration time is equal to the high period of start pulse + 48 cycles of clock pulses, so it will be 101.6 + 4.8 = 106.4 μ s.

Dimensional outlines (unit: mm)

Pin connections

Pin no.	Symbol	I/O	Description	Pin no.	Symbol	I/O	Description
1	Vdd	Ι	Supply voltage	13	Video	0	Video signal ^{*16}
2	Vss		GND	14	NC		No connection
3	CLK	Ι	Clock pulse	15	EOS	0	End of scan
4	NC		No connection	16	NC		No connection
5	NC		No connection	17	NC		No connection
6	NC		No connection	18	NC		No connection
7	NC		No connection	19	NC		No connection
8	NC		No connection	20	NC		No connection
9	NC		No connection	21	NC		No connection
10	NC		No connection	22	Vlcp	0	Bias voltage for negative voltage circuit*17
11	Vss		GND	23	Trig	0	Trigger pulse for video signal capture*18
12	Vdd	Ι	Supply voltage	24	ST	Ι	Start pulse


*16: Connect a buffer amplifier for impedance conversion to the video output terminal so as to minimize the current flow. As the buffer amplifier, use a high input impedance op-amp with JFET or CMOS input.

*17: Approximately -1.5 V generated by the negative voltage circuit inside the chip is output to the terminal. To maintain the voltage, insert a capacitor around 1 µF between Vlcp and GND.

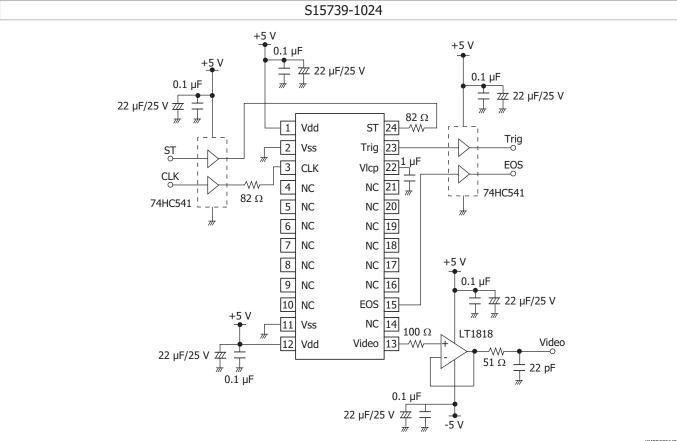
*18: We recommend capturing video signal using the trigger pulse output from Trig.

Note: Leave the "NC" terminals open and do not connect them to GND.

Pin connections

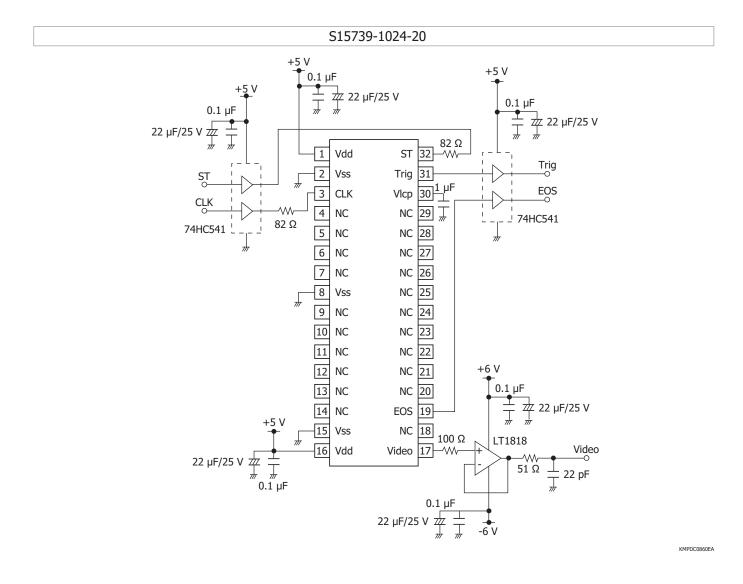
Pin no.	Symbol	I/O	Description	Pin no.	Symbol	I/O	Description
1	Vdd	Ι	Supply voltage	17	Video	0	Video signal ^{*16}
2	Vss		GND	18	NC		No connection
3	CLK	Ι	Clock pulse	19	EOS	0	End of scan
4	NC		No connection	20	NC		No connection
5	NC		No connection	21	NC		No connection
6	NC		No connection	22	NC		No connection
7	NC		No connection	23	NC		No connection
8	Vss		GND	24	NC		No connection
9	NC		No connection	25	NC		No connection
10	NC		No connection	26	NC		No connection
11	NC		No connection	27	NC		No connection
12	NC		No connection	28	NC		No connection
13	NC		No connection	29	NC		No connection
14	NC		No connection	30	Vlcp	Ι	Bias voltage for negative voltage circuit*17
15	Vss		GND	31	Trig	0	Trigger pulse for video signal capture*18
16	Vdd	Ι	Supply voltage	32	ST	I	Start pulse

*16: Connect a buffer amplifier for impedance conversion to the video output terminal so as to minimize the current flow. As the buffer amplifier, use a high input impedance operational amplifier with JFET or CMOS input.


*17: Approximately -1.5 V generated by the negative voltage circuit inside the chip is output to the terminal. To maintain the voltage, insert a capacitor around 1 µF between Vlcp and GND.

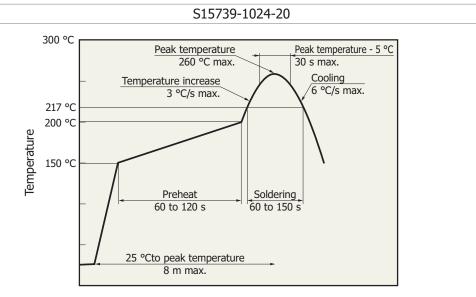
*18: We recommend capturing video signal using the trigger pulse output from Trig.

Note: Leave the "NC" terminals open and do not connect them to GND.



Application circuit examples

KMPDC0564EA



Recommended soldering conditions

S15739-1024					
Parameter	Specification	Note			
Soldering temperature	260 °C max. (5 seconds or less)				

Note: When you set soldering conditions, check that problems do not occur in the product by testing out the conditions in advance.

Time

KMPDB0603EA

Note:

- This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity of 60% or less, and perform soldering within 1 month.
- The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. When you set reflow soldering conditions, check that problems do not occur in the product by testing out the conditions in advance.
- Drastic changes in temperature can cause problems. Keep the temperature change to less than 4 °C/second. Note that the bonding portion between the ceramic base and the glass may discolor after reflow soldering, but this has no adverse effects on the hermetic sealing of the product.

Precautions

(1) Electrostatic countermeasures

These devices has a built-in protection circuit against static electrical charges. However, to prevent destroying the devices with electrostatic charges, take countermeasures such as grounding yourself, the workbench and tools to prevent static discharges. Also protect these devices from surge voltages which might be caused by peripheral equipment.

(2) Light input window

If dust or stain adheres to the surface of the input window glass, it will appear as black spots on the image. When cleaning, avoid rubbing the window surface with dry cloth, dry cotton swab or the like, since doing so may generate static electricity. Use soft cloth, paper, a cotton swab, or the like moistened with alcohol to wipe off dust and stain. Then blow compressed air so that no stain remains.

(3) UV light irradiation

These products are designed to reduce characteristic deterioration under UV light irradiation, but unnecessary irradiation should be avoided. Also avoid exposing the bonding sections of the glass to UV light.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- Image sensors
- · Surface mount type products

Information described in this material is current as of January 2021.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1120-1 1CHINO-CHO, FIIgdSHIFKU, FIGHIAHIAGSU CULV, 452-6036 Japbil, Telepinolic: (1)908-231-0960, Fax: (1)908-231-1218, E-mail: usa@hamamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, 0-82211 Herrsching am Ammersee, Germany: Telephone: (4)9152-375-0, Fax: (49)8152-365-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (3)16 95 37 10, E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (3)16 95 37 10, E-mail: info@hamamatsu.fr United Kingdom: Hamamatsu Photonics VI Limited: 2 Howard Court, 10 Tewin Road, Welwng Gaden City, Hertfordshire AL7 1BW, UK, Telephone: (44)1707-29488, Fax: (44)1707-325777, E-mail: info@hamamatsu.co.uk North Europe: Hamamatsu Photonics Italia S.L.I: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Italia S.L.I: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: Gibio Ches, Telephone: (40)1070-29488, Fax: (40)107 E-mail: info@hamamatsu.se

China: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chayang District, 10020 Beijing, RR.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-8666, Fax: (86)10-6586, Fa

www.hamamatsu.com