

Driver circuit for CCD image sensor

C11860

For CCD image sensor S11850-1106, S14651/S16011 series

The C11860 is a driver circuit developed for CCD image sensors S11850-1106 and S14651/S16011 series. By connecting the C11860 to a PC through the USB 2.0 interface, you can use the PC to convert the sensor's analog video signal into digital output and acquire the result into the PC. The C11860 consists of (1) a sensor circuit board that drives the sensor, (2) an interface circuit board that drives the sensor circuit board and performs data communication with the PC, and (3) a temperature control circuit board for controlling the sensor cooling. The sensor circuit board and interface circuit board are connected using a flexible cable. The sensor circuit board is compact, making it easy to be installed in optical systems. The interface circuit board has an external trigger I/O connector that can be used to synchronize with external devices. This product comes with application software (DcIc-USB) that runs on Microsoft[®] Windows[®] 10 (64-bit). It can be used to easily control the C11860 from the PC. The product also includes a DLL that the user can use to create original C11860 control programs.

Features

- Built-in 16-bit A/D converter
- The sensor circuit board and interface circuit board are connected using a flexible cable.
- Interface: USB 2.0
- External synchronization capable
- Single power supply: +5 VDC
- Sensor cooling control (approx. +5 °C)

- Applications

Spectrometers

- Control and data acquisition of CCD linear image sensor (S11850-1106, S14651/S16011 series)
- Note) Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The C11860 is compatible with the following CCD image sensor. Note that the C11860 does not include the sensor.

Type no.	Number of pixels	Number of effective	Pixel size	Image size	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		pixels	(µm)	$[mm (H) \times mm (V)]$	
S11850-1106	2068 × 70	2048 × 64		28.672 × 0.896	
S14651-1024	1044 × 198	1024 × 192		14.336 × 2.688	
S14651-2048	2068 × 198	2048 × 192	14 × 14	28.672 × 2.688	
S16011-1006	1044 × 70	1024 × 64		14.336 × 0.896	
S16011-1106	2068 × 70	2048 × 64		28.672 × 0.896	

Structure

Parameter	Specification	Unit
Output type	Digital	-
A/D resolution	16	bit
Interface	USB 2.0	-

Driver circuit for CCD image sensor

Absolute maximum ratings

Parameter	Symbol	Condition	Value	Unit
Supply voltage	Vdd	Ta=25 °C	0 to +6.0	V
Input signal voltage ^{*1}	Vi	Ta=25 °C	0 to +Vdd	V
Operating temperature	Topr	No dew condensation*2	0 to +50	°C
Storage temperature	Tstg	No dew condensation*2	-20 to +70	°C

*1: Trigger input

*2: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Electrical characteristics (Ta=25 °C)

Paramete	er	Symbol	Condition	Min.	Тур.	Max.	Unit
Readout frequency*3		fop		-	250	-	kHz
	S11850-1106					83	
	S14651-1024					100	
Line rate*4	S14651-2048	LR		-	-	71	Hz
	S16011-1006					126	
	S16011-1106					83	
Conversion gain		Gc	Gain=2	-	5	-	e⁻/ADU
Triggor output voltage	High level		- Vdd=+5 V	+3.8	-	Vdd	V
Trigger output voltage	Low level	-	vuu=+5 v	-	-	+0.6	V
Trigger input veltage	High level		Vdd=+5 V	+3.5	+5.0	+5.5	V
Trigger input voltage	Low level	-		-0.2	0	+1.5	V
Current consumption		Te	Cooling off	-	400	500	mA
		Ic	Cooling on	-	-	1200	mA
Line period*5 *6		-		3000	-	16777215	clock*7

*3: The readout frequency is fixed.

*4: Theoretical line rate value determined by the internal operation timing of the driver circuit. This is different from the line rate defined in the sensor specifications. This is also different from the overall processing rate (system rate) of acquiring data into the PC via the USB 2.0 port.

*5: Since the S11850-1106 and S14651/S16011 series do not have an electronic shutter function, the exposure time is adjusted using the light source and optical system.

*6: The maximum value of a line period exists when the synchronization mode is set to Internal.

*7: 1 clock=1/fop

Electrical and optical characteristics (Ta=25 °C)

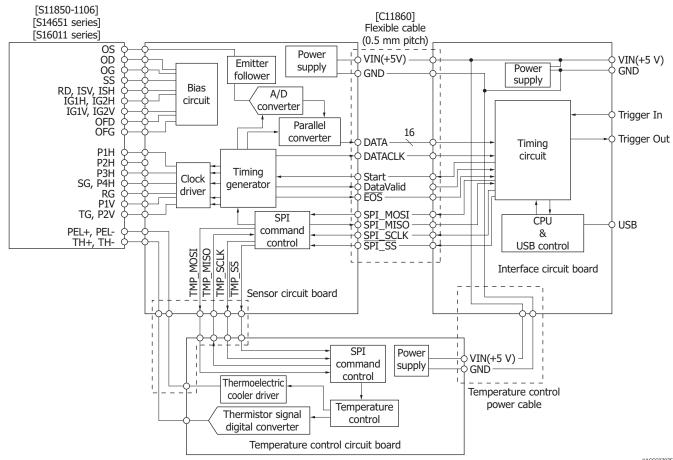
Parameter	Symbol	Min.	Тур.	Max.	Unit
Readout noise	Nr	-	10	-	ADU rms
Saturation output	Dsat	-	-	65535	ADU
Dynamic range ^{*8}	DR	-	6500	-	-
Operating voltage	-	+4.75	+5.0	+5.25	V

*8: DR=Dsat/Nr

Temperature controller specification (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Cooling temperature*9	Ts	-	+5	-	°C

*9: Approximate temperature when sensor cooling control is turned on and the heat sink is externally air-cooled to a sufficient level.



Driver circuit for CCD image sensor

Functions

Function	Description
Trigger mode change	The following trigger modes are available. For the detailed timing of each mode, see "Trigger mode" in "Timing chart" (P.4). • Internal mode • External edge mode
Gain adjustment	The gain can be set in the range of 1 to 6. It is calculated by the following equation. The default gain is 2. $Gain = \frac{6}{1 + 5\left(\frac{63 - G}{63}\right)}$ G: 6-bit value ranging from 0 to 63
Offset adjustment	The offset can be set in the range of -255 to +255. The offset increment per step is approximately 1.2 mV. The offset is set by writing a 9-bit value to the C11860 internal register. If the most significant bit (MSB) of the 9-bit value is zero, the offset is positive. Otherwise, the offset is negative. The value expressed by the bits other than the MSB is the magnitude of the offset. Note that because the offset circuit is arranged before the amplifier stage, the actual offset is equal to the offset value set above \times gain.
Line period change	The maximum value exists in Internal mode.
Sensor cooling control	The sensor's thermoelectric cooler can be switched on and off. The cooling temperature is fixed at $+5$ °C.

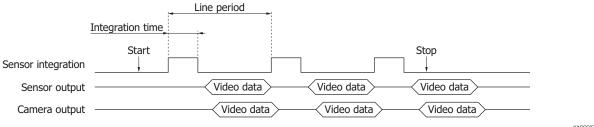
Block diagram

KACCC0787EC

Timing chart

binning operation.

The integration time is controlled by changing the C11860 start pulse period. The C11860 sensor drive timing is based on full line Line period Integration time N line Integration time N+1 line P1V P2V P1H _____ Г ſ P2H P3H ____ P4H _ SG RG

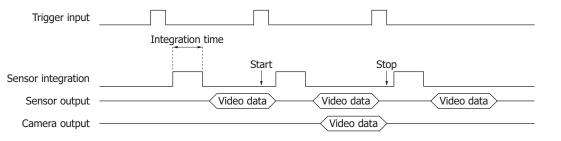

Sensor drive timing

KACCC0785EA

Trigger mode

■ Internal mode

When a Start command is received from the PC, the C11860 starts sensor integration and outputs acquired image data.

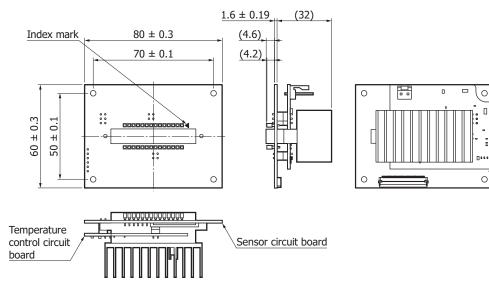


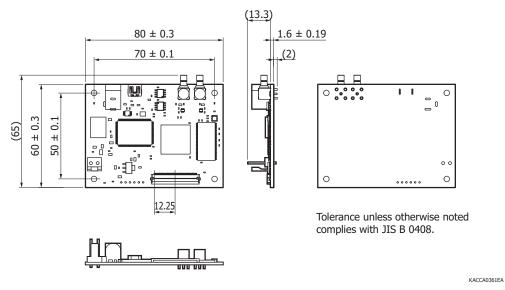
KACCC0783EA

KACCC0784EA

External edge mode

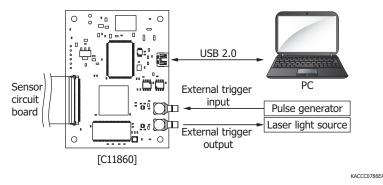
The sensor integration is synchronized to the edges of an external input trigger signal. When the circuit receives an external trigger after having received a Start command, the circuit sends the image data output from the sensor to the PC.




0 ۵

Dimensional outline (unit: mm)

Sensor circuit board/temperature control circuit board


Interface circuit board

Weight: approx. 130 g (including the flexible cable but not the sensor)

Connection example

Accessories

- · CD-ROM (includes the instruction manual, application software, and DLL file)
- · DC power cable (ϕ 2.1 mm positive core wire DC jack cable)
- · Power cable for interface circuit board/temperature control circuit board
- · USB (Mini B) cable
- · Flexible cable for connecting the sensor circuit board/interface circuit board (length: 100 mm)

Precautions

• This product has a function for turning on and off the sensor's built-in thermoelectric cooler, but it does not have a cooling fan. To maintain stable cooling temperature, apply sufficient cooling to the heat sink mounted on the temperature control circuit board.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- Image sensors

Information described in this material is current as of June 2021.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218, E-mail: usa@hamamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10, E-mail: info@hamamatsu.de United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welvyn Garden City, Hertfordshire AL7 18W, UK, Telephone: (44)1707-294888, Fax: (44)1707-325777, E-mail: info@hamamatsu.ou.k

North Europe: Hamamatsu Photonics Norden AB: Torshamrsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: Info@hamamatsu.se Italy: Hamamatsu Photonics Italia S.r.I: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy: Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: Info@hamamatsu.it China: Hamamatsu Photonics Talia S.r.I: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy: Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: Info@hamamatsu.it China: Hamamatsu Photonics Talia S.r.I: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy: Telephone: (39)02-93 58 17 41, E-mail: Info@hamamatsu.it China: Hamamatsu Photonics Talia S.r.I: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy: Telephone: (39)02-93 58 17 41, E-mail: Info@hamamatsu.it Taliwan: Hamamatsu Photonics Talia S.r.I: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy: Telephone: (39)02-93 58 17 41, E-mail: Info@hamamatsu.it Taliwan: Hamamatsu Photonics Taliwan Co., Ltd.: 8F-3, No. 158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)3-659-0080, Fax: (886)3-659-0081, E-mail: Info@hamamatsu.com.tu

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.