

InGaAs linear image sensors

G11620 series (non-cooled type)

Single video line (128/256/512 pixels) near infrared image sensor (0.95 to 1.7 μm)

The G11620 series is an InGaAs linear image sensor designed for near-infrared multichannel spectrophotometry. The CMOS chip includes a charge amplifier, a shift register, and a timing generator circuit. Unlike conventional InGaAs linear image sensors that incorporate two CMOS signal processing chips, the G11620 series uses only one CMOS chip by bump-connecting it to the InGaAs photodiode array. This structure reduces a difference in the video output that usually occurs between odd-number pixels and even-number pixels.

The charge amplifier array is made up of CMOS transistors connected to each pixel of the InGaAs photodiode array. Signals from each pixel are read out in charge integration mode to achieve high sensitivity and stable operation in the wide spectral range.

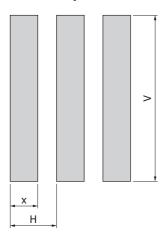
The signal processing circuit on the CMOS chip offers two levels of conversion efficiency (CE) that can be selected by the external voltage to meet the application.

Features

- Low noise, low dark current
- Two selectable conversion efficiencies
- Anti-saturation circuit
- CDS circuit*1
- **■** Built-in thermistor
- ⇒ Simple operation (by built-in timing generator)*2
- High resolution: 25 μm pitch (G11620-256DF/-512DA)

- Applications

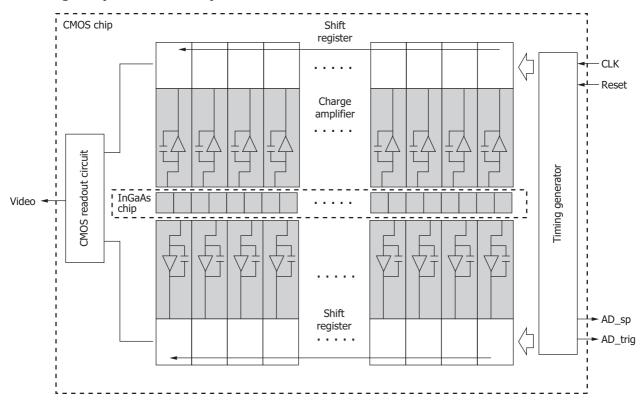
- → Near infrared multichannel spectrophotometry
- **→** Radiation thermometry
- Non-destructive inspection
- *1: A major source of noise in charge amplifiers is the reset noise generated when the integration capacitance is reset. A CDS (correlated double sampling) circuit greatly reduces this reset noise by holding the signal immediately after reset to find the noise differential.
- *2: Different signal timings must be properly set in order to operate a shift register. In conventional image sensor operation, external PLDs (programmable logic device) are used to input the required timing signals. However, the image sensors internally generate all timing signals on the CMOS chip just by supplying CLK and RESET pulses. This makes it simple to set the timings.


Selection guide

Type no.	Cooling Image size		Number of total pixels	Number of effective	Applicable driver
Type 110.	Cooling	(mm)	Number of total pixels	pixels	circuit
G11620-128DA		6.4 × 0.5	128	128	
G11620-256DF	Non cooled	0.4 × 0.5	256	256	C11513
G11620-256DA	Non-cooled	12.0 0.5	256	256	C11515
G11620-512DA		12.8 × 0.5	512	512	

Structure

Type no.	Pixel size [μm (H) × μm (V)]	Pixel pitch (µm)	Package	Window material
G11620-128DA	50 × 500	50	22 nin corpmic	
G11620-256DF	25 × 500	25	22-pin ceramic	Borosilicate glass with anti-reflective coating
G11620-256DA	50 × 500	50	(refer to the dimensional outline)	
G11620-512DA	25 × 500	25		


- Details of photosensitive area (unit: μm)

Type no.	Х	Н	٧
G11620-128DA G11620-256DA	30	50	500
G11620-256DF G11620-512DA	10	25	500

KMIRC0086EA

► Block diagram (G11620-512DA)

KMIRC0048EA

■ Absolute maximum ratings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vdd, INP, Fvref Vinp, PDN	Ta=25 °C	-0.3	-	+6	V
Clock pulse voltage	Vclk	Ta=25 °C	-0.3	-	+6	V
Reset pulse voltage	V(res)	Ta=25 °C	-0.3	-	+6	V
Gain selection terminal voltage	Vcfsel	Ta=25 °C	-0.3	-	+6	V
Operating temperature	Topr	No dew condensation*3	-10	-	+60	°C
Storage temperature	Tstg	No dew condensation*3	-20	-	+70	°C
Soldering conditions	-		260	°C or less, within	1 5 s	-
Thermistor power disspation	Pd_th	Ta=25 °C	-	-	400	mW

^{*3:} When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.

■ Recommended terminal voltage (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd	4.7	5.0	5.3	V
Differential reference volta	age	Fvref	1.1	1.2	1.3	V
Video line reset voltage		Vinp	3.9	4.0	4.1	V
Input stage amplifier refer	Input stage amplifier reference voltage		3.9	4.0	4.1	V
Photodiode cathode voltage	Photodiode cathode voltage		3.9	4.0	4.1	V
Ground		GND	-	0	-	V
Clock pulse voltage	High	Vclk -	4.7	5.0	5.3	\/
clock pulse voltage	Low		0	0	0.4	\ \ \
Dogot pulso voltago	High	V(res)	4.7	5.0	5.3	\/
Reset pulse voltage	Low	v(ies)	0	0	0.3	V

➡ Electrical characteristics (Ta=25 °C)

Parameter			Symbol	Min.	Тур.	Max.	Unit
			G11620-128DA	-	35	60	
		I(Vdd)	G11620-256DF	-	50	80	
	1	ı(vuu)	G11620-256DA	-	55	80	
Consumption surrent			G11620-512DA	-	80	100	m A
Consumption current			Ifvref	-	-	1	- mA
			Ivinp	-	-	1	
			Iinp	-	-	1	
			Ipdn	-	-	1	
Operating frequency		fop		0.1	1	5	MHz
Video data rate		DR		0.1	f	5	MHz
Video output voltage	High	VH		-	4.0	-	- V
Video output voltage	Low		VL	-	1.2	-	\ \
Output offset voltage			Vos	-	Fvref	-	V
Output impedance			Zo	-	5	-	kΩ
AD_trig, AD_sp pulse voltage High Low		,	Vtria Van	-	Vdd	-	V
			Vtrig, Vsp	-	GND	-	V
Thermistor resistance			Rth	9.0	10.0	11.0	kΩ
Thermistor B constant*4			В	-	3950	-	K

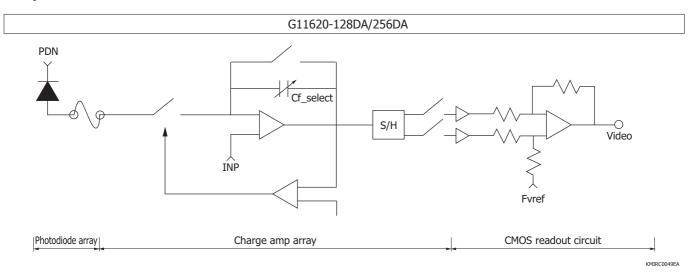
^{*4:} T1=25 °C, T2=50 °C

Note: Absolute maximum ratings are the values that must not be exceeded at any time. If even one of the absolute maximum ratings is exceeded even for a moment, the product quality may be impaired. Always be sure to use the product within the absolute maximum ratings.

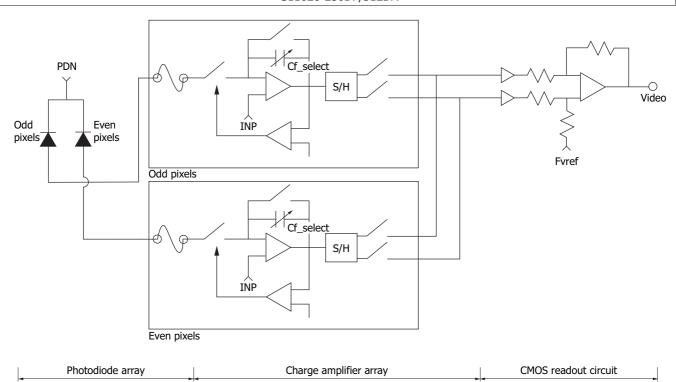
■ Electrical and optical characteristics (Ta=25 °C, Vdd=5 V, INP=Vinp=PDN=4 V, Fvref=1.2 V, Vclk=5 V, f=1 MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Spectral response range	λ		-	0.95 to 1.7	-	μm
Peak sensitivity wavelength	λр		1.45	1.55	1.65	μm
Photo sensitivity	S	λ=λρ	0.7	0.82	-	A/W
Conversion efficiency*5	CE	Cf=10 pF	-	16	-	nV/e⁻
Conversion emclency	CE	Cf=1 pF	-	160	-	liv/e
Photo response non-uniformity*6	PRNU		-	±5	±10	%
Caturation charge	Cont	CE=16 nV/e ⁻	168	175	-	Me ⁻
Saturation charge	Csat	CE=160 nV/e-	16.8	17.5	-	Me
Saturation voltage	Vsat		2.7	2.8	-	V
Dark output	VD	CE=16 nV/e ⁻	-	±0.05	±0.5	V/s
Dark current	ID	CE=16 nV/e ⁻	-	±0.5	±5	рА
Temperature coefficient of dark output (dark current)	-	CE=16 nV/e ⁻	-	1.1	-	times/°C
Readout noise*7	Nroad	CE=16 nV/e ⁻	-	200	400	11/ xmc
Reduout noise	Nread	CE=160 nV/e ⁻	-	300	500	μV rms
Dynamic range	Drange	CE=16 nV/e ⁻	6750	14000	-	-
Defective pixels*8	-	CE=16 nV/e-	-	-	1	%

^{*5:} Refer to pin connection when changing conversion efficiency.

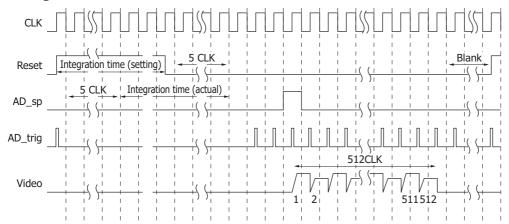


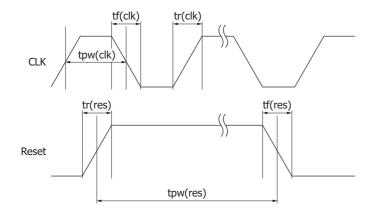
^{*6: 50%} of saturation, integration time 10 ms, after dark output subtraction, excluding first and last pixels


^{*7:} Integration time=10 ms (CE=16nV/e⁻), 1 ms (CE=160 nV/e⁻)

^{*8:} Pixels with photo response non-uniformity, readout noise, or dark current higher than the maximum value

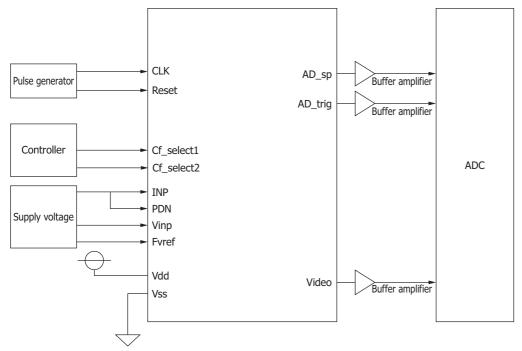
Equivalent circuit



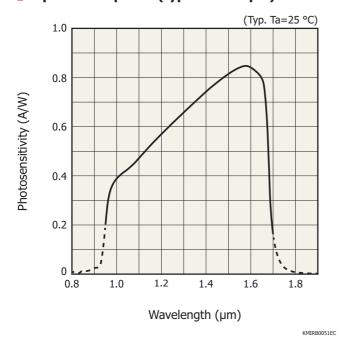

G11620-256DF/512DA

KMIRC0054EA

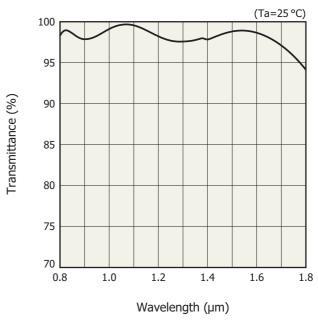
Timing chart



KMIRC0055EB

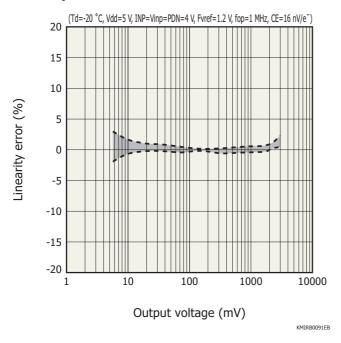

Paramete	er	Symbol	Min.	Тур.	Max.	Unit
Operating frequency	/	fop	0.1	1	5	MHz
Clock pulse width		tpw(clk)	60	500	5000	ns
Clock pulse rise/fall	times	tr(clk), tf(clk)	0	20	30	ns
keset buise wiath	High	tpw(res)	6	-	-	clocks
	Low		"Number of pixels" + 28	-	-	clocks
Reset pulse rise/fall times		tr(res), tf(res)	0	20	30	ns

- Connection example

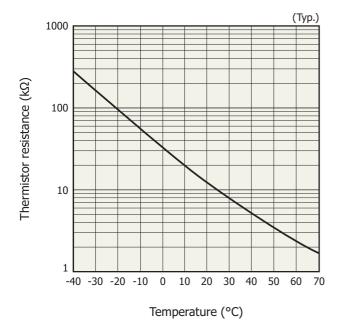


KMIRC0056EB

Spectral response (typical example)



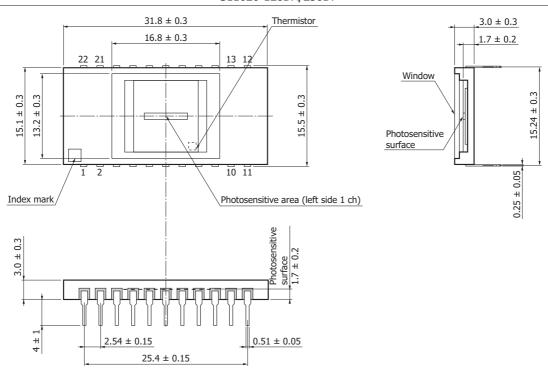
- Spectral transmittance characteristic of window material (typical example)



KMIRB0090EA

Linearity error

Temperature characteristic of thermistor


Temperature (°C)	Thermistor resistance (kΩ)	Temperature (°C)	Thermistor resistance $(k\Omega)$
-40	281	20	12.5
-35	208	25	10.0
-30	155	30	8.06
-25	117	35	6.53
-20	88.8	40	5.32
-15	68.4	45	4.36
-10	53.0	50	3.59
-5	41.2	55	2.97
0	32.1	60	2.47
5	25.1	65	2.07
10	19.8	70	1.74
15	15.7		

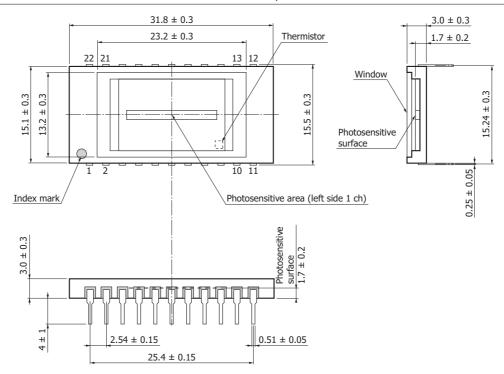
KMIRB0061EA

Dimensional outlines (unit: mm)

G11620-128DA/256DF

Pin no.	Function	Pin no.	Function
1	NC	12	Video
2	NC	13	Vinp
3	NC	14	CLK
4	NC	15	PDN*
5	Cf_select 2	16	INP*
6	Cf_select 1	17	GND
7	Thermistor	18	Vdd
8	Thermistor	19	NC
9	NC	20	AD_trig
10	Fvref	21	Reset
11	NC	22	AD_sp

Chip material: InGaAs Package material: ceramic Lead treatment: Ni/Au plating Lead material: FeNi alloy Reflective index of window material: nd=1.47 Window material thickness: 0.75 ± 0.05 AR-coated Window sealing method: resin adhesion Position accuracy of photosensitive area center: $-0.3 \le X \le +0.3$


* PDN and INP should be at the same potential. When supplying voltage to PDN and INP, it is recommended to use the same power source and short between their pins.

-0.3≤Y≤+0.3

KMIRA0030EB

G11620-256DA/512DA

Pin no.	Function	Pin no.	Function
1	NC	12	Video
2	NC	13	Vinp
3	NC	14	CLK
4	NC	15	PDN*
5	Cf_select 2	16	INP*
6	Cf_select 1	17	GND
7	Thermistor	18	Vdd
8	Thermistor	19	NC
9	NC	20	AD_trig
10	Fvref	21	Reset
11	NC	22	AD_sp

Chip material: InGaAs Package material: ceramic Lead treatment: Ni/Au plating Lead material: FeNi alloy Reflective index of window material: nd=1.47 Window material thickness: 0.75 ± 0.05 AR-coated Window sealing method: resin adhesion Position accuracy of photosensitive area center: $-0.3 \le X \le +0.3$ $-0.3 \le Y \le +0.3$

* PDN and INP should be at the same potential. When supplying voltage to PDN and INP, it is recommended to use the same power source and short between their pins.

KMIRA0023ED

Pin connections

Terminal name	Input/Output	Function and recommended connection	Remark
PDN	Input	Cathode bias terminal for InGaAs photodiode. This should be at the same potential as INP.	4.0 V
AD_sp	Output	Digital start signal for A/D conversion	0 to 5 V
Cf_select1, 2	Input*9	Signal for selecting feedback capacitance (integration capacitance) on CMOS chip	0 V or 5 V
Thermistor	Output	Thermistor for monitoring temperature inside the package	-
AD_trig	Output	Sampling synchronous signal for A/D conversion	0 to 5 V
Reset	Input	Reset pulse for initializing the feedback capacitance in the charge amplifier formed in the CMOS chip. Integration time is determined by the high period of this pulse.	0 to 5 V
CLK	Input	Clock pulse for operating the CMOS shift register	0 to 5 V
INP	Input	Input stage amplifier reference voltage. Supply voltage for operating the signal processing circuit in the CMOS chip. This should be at the same potential as PDN.	4.0 V
Vinp	Input	Video line reset voltage. Supply voltage for operating the signal processing circuit in the CMOS chip.	4.0 V
Fvref	Input	Differential amplifier reference voltage. Supply voltage for operating the signal processing circuit in the CMOS chip.	1.2 V
Video	Output	Differential amplifier output. Analog video signal.	1.2 to 4.0 V
Vdd	Input	Supply voltage for operating the signal processing circuit in the CMOS chip (+5 V)	5 V
GND	Input	Grand for the signal processing circuit in the CMOS chip (0 V)	0 V

^{*9:} Conversion efficiency is determined by supply voltage to the Cf_select terminals as shown below.

	Conversion efficiency	Cf_select1	Cf_select2
	16 nV/e- (Low gain)	High	High
ĺ	160 nV/e- (High gain)	High	Low

Low: 0 V (GND), High: 5 V(Vdd)

Electrostatic countermeasures

This device has a built-in protection circuit against static electrical charges. However, to prevent destroying the device with electrostatic charges, take countermeasures such as grounding yourself, the workbench and tools to prevent static discharges. Also protect this device from surge voltages which might be caused by peripheral equipment.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
 - Disclaimer
 - · Image sensors

Information described in this material is current as of June 2019.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

amamatsu

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

U.S.A.: Hamamatsu Corporation: 360 Footbill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218, E-mail: usa@hamamatsu.com

Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de

France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy, Cedex, France, Telephone: (43)1 69 53 71 00, Fax: (33)1 69 53 71 10, E-mail: info@hamamatsu.fr

United Kingdom: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu.se

Italy: Hamamatsu Photonics Italia S.r.l.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: info@hamamatsu.it

China: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Bellu, Chaoyang District, 100020 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866, E-mail: hpc@hamamatsu.com.cn

Taiwan: Hamamatsu Photonics Taiwan Co., Ltd.: 8F-3, No. 158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (86)3-659-0081, E-mail: info@hamamatsu.com.cn