

CCD linear image sensors

S15254-2048 S15257-2048

Back-thinned CCD image sensors with electronic shutter function

The S15254-2048 and S15257-2048 are back-thinned CCD linear image sensors with an internal electronic shutter for spectrometers. These image sensors use a resistive gate structure that allows a high-speed transfer. Each pixel has a lengthwise size needed by spectrometers but ensures readout with low image lag. The S15254-2048 is suitable for short time period trigger control. The S15257-2048 features pixels that are long vertically, and have a high aspect ratio of 14 μ m \times 2500 μ m.

Features

- Built-in electronic shutter
- High sensitivity from the ultraviolet region (spectral response range: 200 to 1100 nm)
- Readout speed: 10 MHz max.
- Image lag: 0.1% typ.
- Charge reset time in pixels: 1 μs min. (S15254-2048)
- Light-shielded CCD horizontal shift registers

Applications

- Spectrometers
- Image readout
- Optical emission spectrophotometry

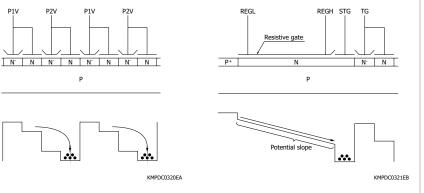
Structure

Parameter	S15254-2048	S15257-2048	Unit		
Pixel size ($H \times V$)	14 × 200	14 × 2500	μm		
Number of total pixels ($H \times V$)	2102 × 1	2160 × 1	-		
Number of effective pixels $(H \times V)$	2048	2048 × 1			
Image size ($H \times V$)	28.672 × 0.200	28.672 × 2.500	mm		
Horizontal clock phase	2-pl	2-phase			
Output circuit	Two-stage MOSFET source follower				
Package	24-pin ceramic DIP (refer to dimensional outline)				
Window*1	Quartz glass (without AR coating)*2				
Cooling	Non-cooled				

*1: Temporary window type (ex. S15254-2048N, S15257-2048N) is available upon request.

*2: Resin sealing

1


Resistive gate structure

In ordinary CCDs, one pixel contains multiple electrodes and a signal charge is transferred by applying different clock pulses to those electrodes [Figure 1]. In resistive gate structures, a single high-resistance electrode is formed in the active area, and a signal charge is transferred by means of a potential slope that is created by applying different voltages across the electrode [Figure 2]. Compared to a CCD area image sensor which is used as a linear sensor by line binning, a one-dimensional CCD having a resistive gate structure in the active area offers higher speed transfer, allowing readout with low image lag even if the pixel height is large.

Ρ

Absolute maximum ratings (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Operating temperature*3 *4 *5		Topr	-50	-	+60	°C
Storage temperature*3		Tstg	-50	-	+70	°C
Output transistor drain voltage	je	Vod	-0.5	-	+25	V
Reset drain voltage		Vrd	-0.5	-	+18	V
Output amplifier return voltage	ge	Vret	-0.5	-	+18	V
All reset drain voltage		Vard	-0.5	-	+18	V
Horizontal input source voltage		VISH	-0.5	-	+18	V
All reset gate voltage		VARG	-12	-	+15	V
Storage gate voltage	Storage gate voltage		-12	-	+15	V
Horizontal input gate voltage	e	Vig1h, Vig2h	-12	-	+15	V
Summing gate voltage		Vsg	-12	-	+15	V
Output gate voltage		Vog	-12	-	+15	V
Reset gate voltage		Vrg	-12	-	+15	V
Transfer gate voltage		Vtg	-12	-	+15	V
	High	VREGH	10		+15	v
Resistive gate voltage	Low	VREGL	-12	-	-15	v
Horizontal shift register clock	voltage	Vp1h, Vp2h	-12	-	+15	V

*3: No dew condensation

When there is a temperature difference between a product and the surrounding area in high humidity environments, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability. *4: Package temperature

*5: The sensor temperature may increase due to heating in high-speed operation. We recommend taking measures to dissipate heat as needed. For more details, refer to the technical information "Resistive gate type CCD linear image sensors with electronic shutter".

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Operating conditions (Ta=25 °C)

	Parameter		Symbol	Min.	Тур.	Max.	Unit
Output transist	or drain voltag	e	Vod	12	15	18	V
Reset drain vol	tage		Vrd	13	14	15	V
All reset drain	voltage		VARD	13	14	15	V
All reset gate y	valta a a	High*6	VARGH	7	8	9	v
All reset gate v	ollage	Low*7	VARGL	0.5	1	2	V
Output gate vo	oltage		Vog	2.5	3.5	4.5	V
Storage gate ve	oltage		Vstg	2.5	3.5	4.5	V
Substrate volta	ige		Vss	-	0	-	V
Decistive astal	high voltage	High	VREGHH	0.5	1	1.5	v
Resistive gate I	nigh voltage	Low	VREGHL	-10.5	-9.5	-8.5	
Desistive asta law valta se		High	VREGLH	-	VREGHH - 8.0	-	V
Resistive gate i	Resistive gate low voltage		VREGLL	-10.5	-9.5	-	
Output amplifie	Output amplifier return voltage*8		Vret	-	1	2	V
Test point	Horizontal inpu	ut source	VISH	-	Vrd	-	V
Test point	Horizontal inpu	ut gate	VIG1H, VIG2H	-10.5	-9.5	-	V
Harizontal shift roa		High	Vp1hh, Vp2hh	5	6	8	- V
Horizontal shift reg	JISLEF CIOCK VOILAGE	Low	VP1HL, VP2HL	-6	-5	-4	ר ע ר
Summing gate	voltago	High	Vsgh	5	6	8	- V
Summing gate	voltage	Low	VSGL	-6	-5	-4	
Reset gate voltage		High	VRGH	7	8	9	v
		Low	VRGL	-6	-5	-4	
Transfor gate y	voltaga	High	Vtgh	9.5	10.5	11.5	v
Transfer gate v	ollage	Low	Vtgl	-6	-5	-4	
External load re	esistance		RL	2.0	2.2	2.4	kΩ

*6: All reset on

*7: All reset off

*8: Output amplifier return voltage is a positive voltage with respect to Substrate voltage, but the current flows in the direction of flow out of the sensor.

Electrical characteristics [Ta=25 °C, fc=5 MHz, operating conditions: Typ. (P.3)]

Parameter	Parameter		Min.	Тур.	Max.	Unit
Signal output frequency		fc	-	5	10	MHz
Line rate		LR	-	2	4	kHz
Horizontal shift register ca	apacitance	Ср1н, Ср2н	-	200	-	pF
All reset gate capacitance		CARG	-	100	-	pF
Desistivo gato canacitaneo	S15254-2048	Chro	-	500	-	~~
Resistive gate capacitance	S15257-2048	Creg	-	3000	-	— pF
Summing gate capacitance	Summing gate capacitance		-	10	-	pF
Reset gate capacitance	Reset gate capacitance		-	10	-	pF
Transfer gate capacitance	Transfer gate capacitance		-	100	-	pF
Charge transfer efficiency	Charge transfer efficiency*9		0.99995	0.99999	-	-
DC output level		Vout	9	10	11	V
Output impedance		Zo	-	300	-	Ω
Output amplifier return cu	urrent*10	Iret	-	0.4	-	mA
	S15254-2048	PAMP*11	-	75	-	
Device consumption		PREG ^{*12}	3.2	12.8	128	
Power consumption	C15257 2040	PAMP*11	-	75	-	— mW
	S15257-2048	PREG ^{*12}	0.64	2.56	25.6	
Desistivo anto registranco*13	S15254-2048	Darc	0.5	5	20	kΩ
Resistive gate resistance*13	S15257-2048	Rreg	2.5	25	100	K22

*9: Charge transfer efficiency per pixel of CCD shift register, measured at half of the full well capacity

*10: Absolute value

The current flows in the direction of flow out of the sensor.

*11: Power consumption of the on-chip amplifier plus load resistance

*12: Power consumption at REG

*13: Resistance value between REGH and REGL

Electrical and optical characteristics [Ta=25 °C, fc=5 MHz, operating conditions: Typ. (P.3)]

	Parameter		9	515254-2048	3	9	515257-204	8	Unit
			Min.	Тур.	Max.	Min.	Тур.	Max.	
Saturation out	put voltage	Vsat	-	Fw × CE	-	-	Fw × CE	-	V
Full well capac	ity ^{*14}	Fw	150	200	-	150	200	-	ke⁻
Linearity error	*15	LR	-	±3	±10	-	±3	±10	%
Conversion eff	iciency	CE	9	10	11	9	10	11	µV/e⁻
Dark curront*16	Non-MPP operation	DS	-	40	120	-	500	1500	ke ⁻ /pixel/s
	MPP operation	05	-	8	32	-	20	80	ke/pixel/s
Dark output	Non-MPP operation	DSNU	-	-	300	-	-	300	- %
nonuniformity	MPP operation	DSNU	-	-	-	-	-	-	7 %
Readout noise		Nread	-	30	45	- 30 45		e ⁻ rms	
Dynamic range	*17	Drange	-	6670	-	-	6670	-	-
Defective pixel	S* ¹⁸	-	-	-	0	-	-	0	-
Spectral respo	nse range	λ		200 to 1100			200 to 1100		nm
Peak sensitivity	y wavelength	λр	-	600	-	-	600	-	nm
Photoresponse	e nonuniformity* ¹⁹ * ²⁰	PRNU	-	±3	±10	-	±3	±10	%
Image lag*19 *21	Average image lag of all pixels	1	-	0.1	1	-	0.1	1	- %
Indge ldg 13 off	Maximum image lag of all pixels	L	-	1	3	-	1	3	70
Charge reset t	ime using ARG*22	Tar	1	-	-	100	-	-	μs

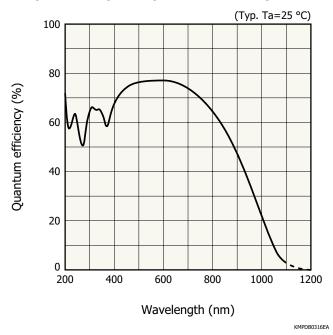
*14: Operating voltages typ.

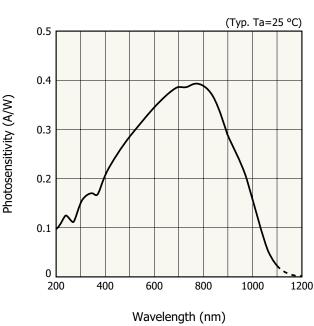
*15: Signal level=1 ke⁻ to 150 ke⁻. Defined so that the linearity error is zero when the signal level is at one-half the full well capacity.

*16: Dark current is reduced to half for every 5 to 7 °C decrease in temperature.

*17: Dynamic range (Drange) = Full well capacity / Readout noise

*18: Pixels that exceed the DSNU or PRNU maximum

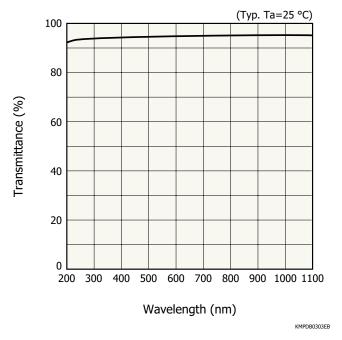

*19: Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 660 nm)


*20: Photoresponse nonuniformity = $\frac{\text{Fixed pattern noise (peak to peak)}}{\text{Signal}} \times 100 [\%]$

*21: Percentage of unread signal level when a one-shot light pulse is irradiated so that the output is half the saturation output. The integration time during measurement is 5 μs for the S15254-2048 and 100 μs for the S15257-2048. For details, see the technical information (resistive gate type CCD linear image sensor with electronic shutter).

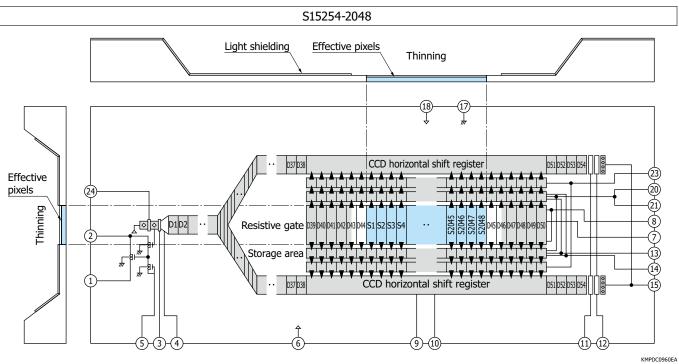
*22: The time until the image lag of the in-pixel charge, on average of all pixels, is less than 0.1% with the reset operation using ARG.

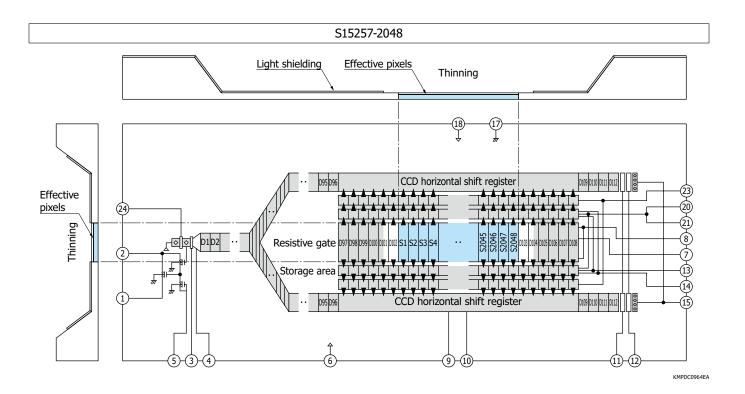
Spectral response (without window)*²³



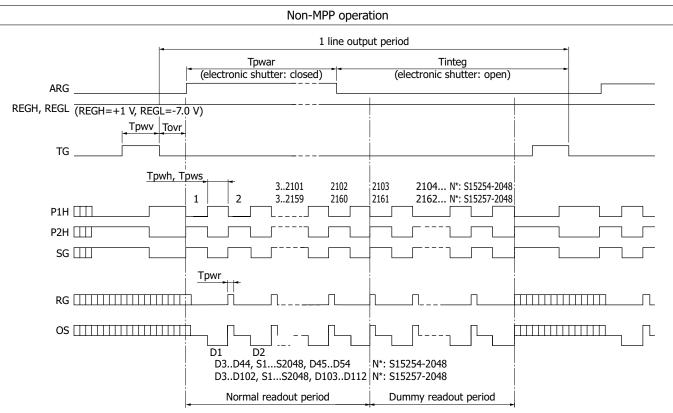
*23: Spectral response with quartz glass is decreased according to the spectral transmittance characteristic of window material.

KMPDB0440EA


4



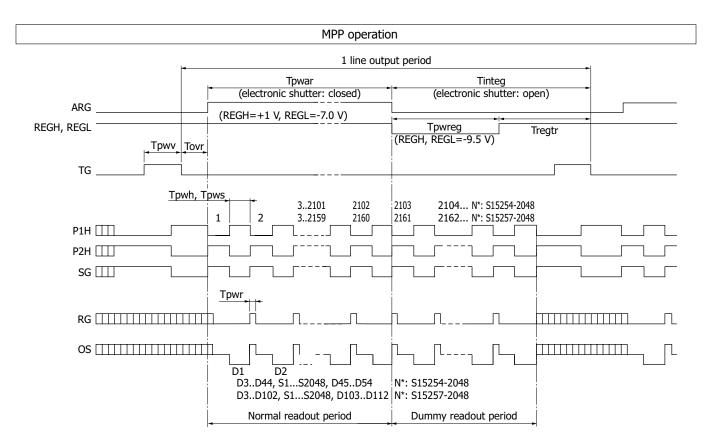
Spectral transmittance characteristic of window material



Note: When viewed from the direction of the incident light, the horizontal shift register is covered with a thick silicon layer (dead layer). However, long-wavelength light passes through the silicon dead layer and may possibly be detected by the horizontal shift register. To prevent this, provide light shield on that area as needed. Note that the transmission of long wavelengths in the dead layer covering the horizontal shift register was reduced compared to previous products.

Signal charges that undergo photoelectric conversion at each pixel of the photosensitive area are directed upward or downward based on the boundary line at the center of the photosensitive area and transferred. Then, they are combined through the horizontal registers and read out by the amplifier.

Timing chart


* Apply clock pulses to the specified terminals during the period of dummy readout. Set the total number of clock pulses N, according to the integration time.

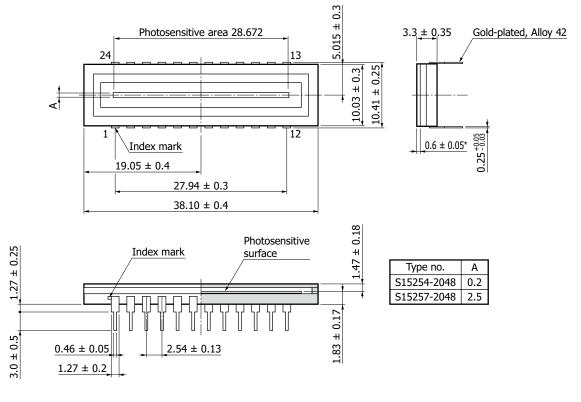
KMPDC0961EA

Para	ameter	Symbol	Min.	Тур.	Max.	Unit
ARG	Pulse width	Tpwar	1	-	-	μs
AKG	Rise and fall times	Tprar, Tpfar	200	-	-	ns
TG	Pulse width	Tpwv	2	-	-	μs
16	Rise and fall times	Tprv, Tpfv	20	-	-	ns
	Pulse width	Tpwh	50	100	-	ns
P1H, P2H* ²⁴	Rise and fall times	Tprh, Tpfh	10	-	-	ns
	Duty ratio	-	40	50	60	%
	Pulse width	Tpws	50	100	-	ns
SG	Rise and fall times	Tprs, Tpfs	10	-	-	ns
	Duty ratio	-	40	50	60	%
DC	Pulse width	Tpwr	5	15	-	ns
RG	Rise and fall times	Tprr, Tpfr	5	-	-	ns
TG - P1H	Overlap time	Tovr	1	2	-	μs
Tuto quation times	S15254-2048	Tinter	5	20	-	
Integration time	S15257-2048	Tinteg	100	150	-	– μs

*24: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

* Apply clock pulses to the specified terminals during the period of dummy readout. Set the total number of clock pulses N, according to the integration time.

KMPDC0962EA

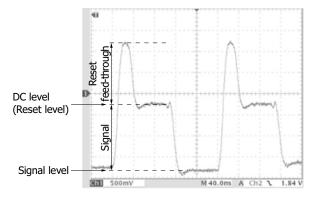

	Parameter	Symbol	Min.	Тур.	Max.	Unit
	Pulse width	Tpwar	*25	-	-	μs
ARG	Rise and fall times	Tprar, Tpfar	200	-	-	ns
	Pulse width	Tpwreg	-	Tinteg - Tregtr	-	μs
	Rise and fall times	Tprreg, Tpfreg	100	-	-	ns
REGH, REGL	Transfer time S15254-2048	Troatr	5	20	-	
	S15257-2048	– Tregtr	100	150	-	— μs
TG	Pulse width	Tpwv	2	-	-	μs
IG	Rise and fall times	Tprv, Tpfv	20	-	-	ns
	Pulse width	Tpwh	50	100	-	ns
P1H, P2H* ²⁶	Rise and fall times	Tprh, Tpfh	10	-	-	ns
	Duty ratio	-	40	50	60	%
	Pulse width	Tpws	50	100	-	ns
SG	Rise and fall times	Tprs, Tpfs	10	-	-	ns
	Duty ratio	-	40	50	60	%
DC	Pulse width	Tpwr	5	15	-	ns
RG Rise and fall times		Tprr, Tpfr	5	-	-	ns
TG - P1H	Overlap time	Tovr	1	2	-	μs
intogration time	S15254-2048	Tintog	5	20	-	
ntegration time	S15254-2048 S15257-2048	Tinteg	100	150	-	— μs

*25: The Min. value of Tpwar is equal to the normal readout period.

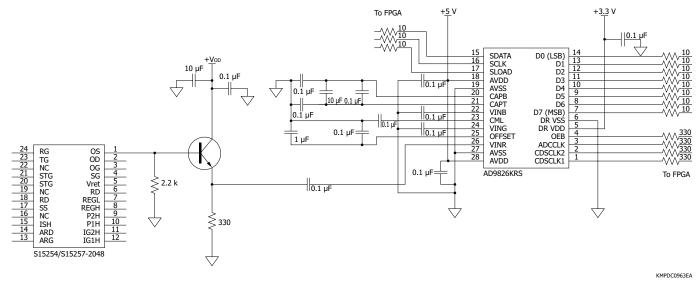
*26: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Dimensional outline (unit: mm)

 * Glass thickness (refractive index ≈ 1.5) Weight: 3.8 g


KMPDA0643EA

Pin connections


Pin no.	Symbol	Function	Remark (standard operation)
1	OS	Output transistor source	RL=2.2 kΩ
2	OD	Output transistor drain	+15 V
3	OG	Output gate	+3.5 V
4	SG	Summing gate	Same pulse as P2H
5	Vret	Output amplifier return	+1 V
6	RD	Reset drain	+14 V
7	REGL	Resistive gate (low)	-7 V (Non-MPP operation)
8	REGH	Resistive gate (high)	+1 V (Non-MPP operation)
9	P2H	CCD horizontal register clock-2	+6 V/-5 V
10	P1H	CCD horizontal register clock-1	+6 V/-5 V
11	IG2H	Test point (horizontal input gate-2)	-9.5 V
12	IG1H	Test point (horizontal input gate-1)	-9.5 V
13	ARG	All reset gate	+8 V/+1 V
14	ARD	All reset drain	+14 V
15	ISH	Test point (horizontal input source)	Connect to RD
16	-		
17	SS	Substrate	GND
18	RD	Reset drain	+14 V
19	-		
20* ²⁷	STG	Storage gate	+3.5 V
21* ²⁷	STG	Storage gate	+3.5 V
22	-		
23	TG	Transfer gate	+10.5 V/-5 V
24	RG	Reset gate	+8 V/-5 V

*27: Pins 20 and 21 are shorted inside the package.

- OS output waveform example (fc=5 MHz, RL=2.2 kΩ, VoD=+15 V)

High-speed signal processing circuit example (using S15254/S15257-2048 and analog front-end IC)

Recommended soldering conditions

Parameter	Specification	Remarks			
Solder temperature	260 °C max. (5 s or less)	At least 2 mm away from lead roots			

Note: When you set the soldering conditions, check that problems do not occur in the product by testing out the conditions in advance.

Precautions (electrostatic countermeasures)

- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- \cdot Do not place the sensor directly on workbenches or floors that may become charged with static electricity.
- \cdot Connect a ground wire to workbenches or floors in order to discharge static electricity.
- \cdot Ground tools, such as tweezers and soldering irons, that are used to handle the sensor.

It is not always necessary to provide all the electrostatic countermeasures stated above. Implement these countermeasures according to the extent of deterioration or damage that may occur.

- When UV light irradiation applied
- When UV light irradiation is applied, the product characteristics may degrade. Such examples include degradation of the product's UV sensitivity and increase in dark current. This phenomenon varies depending on the irradiation level, irradiation intensity, usage time, and ambient environment and also varies depending on the product model. Before employing the product, we recommend that you check the tolerance under the ultraviolet light environment that the product will be used in.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- · Image sensors
- Technical information
- · Resistive gate type CCD linear image sensors with electronic shutter

C15361-2105 Driver circuit for CCD linear image sensor (sold separately)

The C15361-2105 is a driver circuit designed for HAMAMATSU CCD linear image sensors S15254-2048 and S15257-2048. The C15361-2105 can be used in spectrometer when combined with the CCD linear image sensor.

Features

- Built-in 16-bit A/D converter
- Interface of computer: USB 3.1 Gen 1
- Operates by DC+5 V

Information described in this material is current as of December 2021.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1120-1 ICNINO-CRO, HIGBSNI-KU, HAMAMATSU LITY, 455-8558 JAPAN, IEEPINONE: (81)55-454-5311, FAX: (81)55-454-5184 U.S.A.: HAMAMATSU CORPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A.; Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com Germany: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH: Arzbergerstr. 10, 82211 Hersching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-365-8 E-mail: info@hamamatsu.de France: HAMAMATSU PHOTONICS RANCE S.A.R.L: 19, Rue du Saule Trapu, Par cdu Moulin de Massy, 9182 Massy Cedex, France, Telephone: (33)16 95 37 11 0, Fax: (33)16 95 37 11 0, E-mail: info@hamamatsu.de France: HAMAMATSU PHOTONICS RANCE S.A.R.L: 19, Rue du Saule Trapu, Par cdu Moulin de Massy, 9182 Massy Cedex, France, Telephone: (33)16 95 37 100, Fax: (34)107-325777 E-mail: info@hamamatsu.de North Europe: HAMAMATSU PHOTONICS NORDEN AB: Torshamsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01 E-mail: info@hamamatsu.se Italy: HAMAMATSU PHOTONICS ITALIA S.R.L: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.inf China: HAMAMATSU PHOTONICS (CHINA), CO, LTD: : 201 Tower B, Jiaming Center, 27 Dongsanhuan Beliu, Chaoyang District, 100020 Beljing, PR. China, Telephone: (68)10-6586-6006, Fax: (66)10-6586-2866 E-mail: hpc@hamamatsu.com.cn Taiwan: HAMAMATSU PHOTONICS TAIWAN CO, LTD:: 8F-3, No.158, Section 2, Gongdao Sth Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)3-659-0080, Fax: (86)3-659-0080, Fax: